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Application of the Special Matrices to the Parallel Routing
Algorithm on MRNS Network

Wan Kyoo Choi ! i Yong Chung "

ABSTRACT

MRNS network is a general algebraic structure of Hypercube network, which has recently
drawn considerable atteniion to supercomputing and message~passing communications. In this
paper, we investigate the routing of a message in an n-dimensional MRNS network, that is a key
10 the performance of this network. On the n-dimensional MRNS network we would lke to trans.
mit packets from a source node to a destination node simultanecusly along a [ixed number of
paths, where the superscript packet will traverse along the superscript path. In order for all pack-
els to arrive at the destination node quickly and securely, the ith path must be node-disjoint from
all other paths. By investigating the conditions of node-disjoint paths, we will employ the special
matrices called as the Hamiltonian Circuit Latin Square(HCLS) described in [1] to construct a set
of node—disjoint paths and suggest a linear-time parallel routing algorithm for the MRNS network.

1. Introduction

The rapidly growing and intense interest in
interconnection networks used graph-theoretic
properties{ 2] for their investigations and pro-
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duced various interconnection schemes. Many
of these schemes have been derived to opti-
mize important parameters such as degree,
diameter, fault-tolerance, hardware cosl, and
the needs of particular applications. Owing to
low degree and diameter,and the relative ease
in mapping different graph configurations
(ring[3], linear arrays[3], systolic arrays[4],
trees[5], meshes[3])
into hypercube,these hypercube multicompu-

and multidimensicnal
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wrs have naturally drawn considerable atien-
uon o supercomputing[ 8] end message-pass-
ing commumeations[7]. The MRNS network,
a general algebraic structure of hypercube
network, consists of N idenucal processors
{nodes) and each processor, provided with s
own sizable local memory, 1s connected
through bidirectinal, point-ic-point communi-
cation chennels to 1 different neighbors to
form a communication network.

The routing of message is thus a kev 1o
the performance of such networks. There are
routing algerithms using well-known methods,
such as the Shotrest Path Algorithm(the For-
ward Algorithm)[8], the Backward Algo-
rithm{9], the Spanning Tree Algorithm[1C].
These algorithms provide for onlv sequential
transmission, from the source node w the de-
sired node in a short time. However, we
would like to look for algorilhms that are ce-
pable of handling multiple dala 1lems
simultanecusly transmitted from the starung
(sourace) node to the destination node on the
n-dimensional hypercube network. There are
few algorithms that allow us to locate n dis-
joint paths such as the Hamithms path Algo-
rithm [10], the Rolation Algorithm using
Tree Structure[10], the Disjoint path Algo-
rithm{11], and the Routing Algorithms[7].

Generally speaking, the discovery of the
maximum nurmber of node-disjoint paths on a
random network is compulationally difficult.
However, 1t has been proven that these paths
exist in a specific network[6]. From this
fact, the Routing Algorithm for finding these
paths on the hypercube network has been de-
signed.

In this paper, we propose the algebraic ap-
proach to the routing of message on the n-
dimensinal MRNS

above,we would like to simultaneously trans.

network. As described

mit ¢ packets from the starting(source)

node 1o the destinalion node. In this casethe
superscrimt packet is sent along the ith path
from the starting node to the deslination
node. In order for all packets to arrive at
the destination node quickiy and securely, the
ith path must be node-disioint from all other
paths. Chungl[l] investigales the conditions
that make a set of n node-disjoint paths
from a arbitrary starting node to the destina-
tion nede on n-dimensional hypercube. From
the above conditions so developed, a special
matrix, called the Matrix for Generating
Node-Disjoint Paths(MGNDP), is constructed.
MGNDP s,
computatio-nally a difficult preblem. In order

Designing  the however,
1o decrease the difficulty, the subclass o the
MGNDP is called the Matrix for Generating
the Shoriest Node-Disjoint Paths(MGSMNDP),
is generated. Later, using the CSnLS(Cyclic
Subsets of order n Laiin Square[12]) and
the HCLS(Hamiltonian Circuit Latin Square),
the MCSnM(Modified Cyclic Subsets of order
n Matrix) and the MHCM(Medified Hamilt
onian Circuit Matrix), which belong to the
MGSNDP, will be presenied and constructed.
Qur cbjective in the paper is to design a
set of £ shorlest and node-disjoint paths on
n-dimensional MRNS network[11]. To accom-
plish this,
squares mentioned above and considering the

employing these special latin

structure of tne MRNS network, we con-
struct a linear-time parallel routing algirithm
on this network.

This paper is organized of the following
three sections. Section 2 describes what
MRNS network is. In Section 3, the special
latin square is applied to construct a set of
node—disjoint paths on the MRNS network.
Finally, the paper concludes with Section 4.

2. Description of The MRNS Network



The MRNS nelwork is consiructed from
the mixed raar auinmer system(MRNS). The
routing algorithms of the MRNS network are
similar to those of the hypercube network[9]
-[11]. Each algorithm is composed of two
phases. The first phase is 1o transmit the
packet to a randomly chosen intermediate
node through the secret route. The second
phase is 1o send the packet from this inter-
mediate node to the destination node along
the secrel path. This section provides the def-
iniion of the MRNS, gives a description of
the MRNS network, and presents two routing
algorithms of the MRNS network.

2.1 A Mixed Radix Number System
{MRNS)

Let N be the total number of nodes of the
MRNS network and be represented as a
product of m/s, where m, is the number of
vertices on the i* dimension, m, > 1 for 0
<1< n-1.

N = mg, & me; % - *m, * m

Then, each node u between 0 and N-1 can
be represented as an n-tuple (U,o;up-z--u )
for 0 = ul < (m—1).
each ul is a weight wi, such that

Associated with

n—1 =1

u= 2l u, * wandw= J7 =m._, * m,.,
1=0 =0

* ITlg. Wo= 1.

Example 1: For N = 24, m, and w, can be

computed as follows.

24 = 4 % 3 % 2.
mg=2,m =3 m = 4
6

wo =1, w, =2 w, =

(Fig. 1) 4%34%2 MRNS Network

Then, u = (), 0 < W< 1, 0 < y
< 2,0 € u, £ 3 for any u in the range 0
— 23. 0, = (000), 23,, = (321) in this
mixed number system. Any node can be
desribed in this system between (000) and
(321). Node (000) is directly connected to
nodes (001), (010), (020), (100), (200) and
(300) as shown in Fig. 1. For the sake of
clarily, connection is nol completed in this
figure shown by dotted lines.

2.2 Structure of the MRNS Network

Each node u = (u,—upes--ui-yg) is con-
nected to nodes (Upe Upp-Ur+-ug) for all 0
< 1 < n—1, where U, can be any integer
from {0, 1,--, m,—1} except ui itself. Given
n-dimensions with m, number of nodes in the
ih

i" dimension, the following facts are de-

scribed.

(1) The total number of links per node is
I= % (m—1)

(2) The total number of links in the
MRNS network is N/2 % ¢ where N
is the total number of nodes.

(3) Each dimension is constructed as a
complete graph. This means that for
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the i" dimenston, the total number of
vertices is m, and the total number of
links is m, % (m—1)/2. Then, the
link(p,q) is represented as (1,j), where

p—1
i= glo (m—k—1+(g-p), p<a, pa

& Zo
(4) The n—dimensional MRNS is 2 con-
nected graph of diameter n.

Now, we examine the flexibility of design-
ing the MRNS network. Given N nodes{N=
prime number), more than one kind of
MRNS network can be designed based on
considerations such as the dynamic securily,
the volume of data to be transmitted, and
the cosl of the hardware. If the netwark is
more secure and has a large volume of data,
then the network can be constructed with
more links. However, the cost for construct-
ing the network is a primary consideration,
so the network should be designed with as

few links as possible.

Example 2. Given 24 nodes, four kinds of
MRNS networks, NK,, NK, NK; and NK,,
can be designed.

NK, = Z;x Zpn
NK, Zs x Zy
NK, Zy x L
NK, = Z:x Zs x Z4

Employing (2) above, the total number of
links is computed as 144, 108, 96, 72 for NK
., NK. NK; NK,, respectively.

3. The Application of the Special Mat-
rice for the Parallel Routing Algo-

rithm on the MRNS Network

The routing algorithm of the MRNS net-

work ars smilar w those of the hypercube
network., For the MRNS network, the number
of channels is determined by the modular
number ‘or each dimension, while the modu-
lar number of each dimension in the hype-
rcube network is always 2. Considering the
siructure of the MRNS network, the follow-
ing two propositions are described.

Proposition 1: Let A and B be any two
nodes in the MRNS network and assume that
E(AB)12} < n. Then there are H(AB)
parallel paths of length H(AB) between the
nodes A and B

Proot : Let H(AB) = k. Then the bit po-
sitions thal differ hetween A and B are {a,
&. , a). We can write k permutations of
this set, indicating the different bil positions
for k parellel paths of Jength k. These k per-
mutations are used to design the special latin
square matrix. Using this special latin square
matrix, k parallel paths are obtlained autom-

tically. [q.e.d.]

Propesition 2: Let A and B be any two
nodes of an n—dimensional MRNS network
and assume that H(AB) < n. Then there
are £ parallel paths between A and B, where

¢ = HZ' (m,—1). The length of each path is
=0

at most H(A,B) + 2.

Proof © In addition to the k parallel paths
mentioned in Proposition 1, ‘we consider the
other (/—k) different paths. There are two
tvpes of paths. The length of the path for
the first type is k+1. The length of the path
for the other type is k+2. For the first type,
each of the additional paths starts at some
bit position d at which A and B differ. The
packet is sent initially along an incorrect link
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in some dimension d; thal is, the address of
the node where the packel arrives differs
from the address of the destinalion node by
exaclly the same number of bit posilions as
the original node does. Then, the packet is
sent along the correct links in all dimensions
other than d, as in Proposition 1. Finally, we
send lthe packet along the link in dimension d
that takes the packet to the destination node.
This link can be found easily from the fact
that each dimension of the MRNS network is
constructed as a complete graph.

For the latter iype, each of the additional
paths starts at a bit position at which A and
B do not differ. Then, correct bits al
through ak by choosing one of the k paths
from the previous proposition. Finally, change
the starting bit back o what it was original-
lv. The additional paths will never cross each
other, since these paths select different links
al the first and the last sieps, and select the
links for the remaining steps by Proposition
1. These ¢ paths are disjoinl because each set
of paths has a different length. [q.e.d.]

For the design of parallel routing algo-
rithm, we describe the special matrices called
the HCLS(Hamitonian Cireuit Latin Square)
mentioned on Reference [1].

Definition 1: The HCLS is constructed as
follows: Given distinel n points,a Hamiltonian
cireult @y & *** 8,7 @, & is randomly se-
lected. On the circuit each row of the matrix
obtained from the Hamiltonian path, starting
at any position a(0<]<n—1), under the con-
dition that no iwo rows begin at the same
position. If a Hamillonian path is a, au, ...,
a,—1, then the row obtained from it is [a, aw

PERTENE: T

Let us first find a set of ¢ node—disjoint
paths from a starting node A to a desired

node B on n—dimensional MRNS netwaorlks,
having d(A,B)=k. Then, the special latin
square of order k is applied to the consi-uc-
Uon of k node—disjoint paths. Then, the
remainin g ({—k) paths are constructed by
Proposition 2 ahove. The following algorithm
(MRNS—Routing) expressed in a psudocode
form, generates n position sets, the i* posi-
tions through which the i packel is transmit-
ted from the starting node to the destination
node (0<i</~1).

MRENS Routing

N«{0l,...n—1}/%N=the set of hit posi-
tions enumeration % /

A—{a, 18, 5.8t/ % A=lhe address of the
starting node A%/

Be—{bu—iby- b} ¥ B=the address of the
destination node B/

(1) Compute the set C of the links(C={(p
Q03 (P11 ) eees (Pr= 1,1 ) 1)y where pi s
a bit position that differs between the
two nodes A and B, and g, is a specif-
ic link on p" dimension(see the struc-
ture of this network mentioned on Sec-
tion I1.2).

(2) Using k distinct bit positions defined in

C, design the special matrix L for con-
structing k parallel paths.
/4 Subscript= the superscript position
set consisting of links along which the
data traverses from node A to node B
*/

(3) S, — the " row of the matrix L, 0<i
<k-—1.
m < 0

(4) while (m < n)
begin (% while *)

In order to obtain the remaining (#-
k) parallel paths,
we apply the idea of Proposition 2.
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(4.1) if(m & p; in C, 0<igk—1) then
construct the (w,—1)x(k=2)
malrix M,

Mie = M-, Moo € C1, Cl=
{(mg0). (M)}, [Cl]=(We
—1),

MaoE=Mu(i53), (M, Miz, w0 M
« = C, 0l j=w,—L

(4.2)else
construct  the (w,—2)%(k+1)
matrix M,

M, & Cl, Cl={(m.g..(mgq
D} — (Mg, (mg) € C, |
Cl| =(wu—2),

Ma #+ Mp(i#D, {Ma Mz
M-} = C—{(max., 01, j=w
a2

Using the method to obuain the
link connected to a desired node
(see Section 11.2), M, can be
easily computed.

(5) S,=the j* row of the matrix M;

m «— m+1l

end( % while %)

(% end of MENS—Routing *)

The following example will provide a better
understading of the Algorithm given above.

Example 3: Let the MRNS network M =
(Z, x Za x Zs x ZJ), the starting node A=
(0000) and the desired node B = (0223).
Then, eight parallel paths from A to B are
designed as follows!:

(1) Following the first step of the Algo-
rithm, we locate the bit positions(di-
mensions) that differ between nodes A
and B, and the specific links on these
dimensions.

C={(0,3),(1,2),(2,2)}

(2) Step(2) of the Algorithm requires the

design of a (3x3) HCLS, which 1= de-
scribed as follows:According to Defini-
tion 1, the Hamiltonian circuit (1—2—
0—1) is randomly selected among 3!
Hamilionian circuit. Then, the first,
second and third rows are obtained
from four hamiltonian paths, starting
at the third, first, second positions,
respectively.

- (0.3) (1,2) (2.2)

L (1,2) (2,2) (03) }

£(2,2) (0,3) (1,2)

(3) In step(3), we were required to deter-

mine the 1% position set Subscript for
the i* path(0=<1<2).
- Se={(0,3), (1,2), (2,2)} ~
l Si={(1.2), (2,2), (0,3)}
- 8,={(2,2), (0,3}, (L2)}

| S

(4) Using Propostion 2, the remaining five

parallel paths are now designed.
In the case of m=0, step (4.2) is
adopled, and the (2x4) matrix is con-
structed. Then, C1 = {(0.1), (0,2)},
{M,;, M,,} = {(1,2), (2,2)}. Mg and
M, can be (0,1) and (0,2), respecti—
vely. Given (0,1) and (0,2), Moa and
M,,; are obtained as (0,5) and (0,6).

F (0,1 (1,2) (2,2) (05)

L (0,2) (1,2) (2.2) (0,6)]

For m=1,2 step (4.2) is also adopted.
However, step (4.1) is applied when m
=3, and the (1x5) matrix is construct-
ed. Then, C1 = {31}, My, My M
=t = {€0,3), (1,2), (2,2)}. Mue = (3,
1) and My, = (3,1).

[(3,1) (0,3) (L,2) (2,2) (3,1)]

(5) The i* position set Subscript for the i
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b path(3<i<7) 15 delermined.
S;={(0,1), (1,2), (2,2), (0,5)}
8,={(0,2), (L2), (2,2), (0,6)}
Ss={(1,1), (2,2), (0,3), (1,3}
Se={(2,1), (0,3), (1,2), (2,3)}
S:={(3,1), (0,3), (1,2), (2,2), (3,1}

From the above design, there are 8 parallel
paths—each of three paths has length 3, each
of four paths has length 4, and the remain-
ing path has length 5. The path P; has the
sequence of distinel nodes as follows:

P, 1 A—(0003)—(0023)—B

P, 1 A—(0020)—(0220)—B

P, : A—(0200)—(0203)—B

P, 1 A—(0001)—(0021)—(0221)—B

P, 1 A—(0002)—(0022)—(0222)—B

P; ¢ A—(0010)—(0210)—(0213)—B

P 1 A—(0100)—(0103)—(0123)—B

P, : A—(1000)—(1003)—(1023)—(1223)—B

4. Condusion

This paper presents parallel routing algo-
rithm on an n-dimensinal MRNS network by
using the special Latin sguare matrices.
Given the starting node A and the destina-
tion node B on this network, we generates a
set of shortest and node-disjoint paths from
node A to node B. The main cost of the
routing algorithm is the time complexity re-
quired in designing the special matrices used.
Since the time complexity for the design of
the HCLS(see Definition 1) i1s O(n), we can
create a linear-time, parallel routing algo-
rithm for constructing a set of shortest and
node—disjoint paths.
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