18 E=FEM2|AE =2 R MY H15(%6.1)

AdFe AR Ho] q Rt S

2

C_)':

A2ele) A2d TaE D) YT 58 AHD T2aY TR B 449 AU
ofth A of 2ZL Holete] RZE AA Holx TH-Fu wBg A TLB o AL yous
AT dlolst A9 sme) Yol Washeh wek A =y)7t sbg mel) HolA] moe A o]
RS 9@ 35 FuTh AW ILBYZH dols ANY B2e B2 ueh] ojsed, wepy
Z2AM BolYe) 4 Fro} Dol o] GUe mlAUT o|Te WY B2L HA] sse B
M TLBe 2ol 91 9@ AMy TLBE 28¢ £¢ A4 TLBE AQeich ke TLB 42|
TE AGALE FY ¢ gov Fhe WATVH B4 2E ¥AF AR < QA 9o sy
TE 29 449 B39 deid AL TLBE 47ks deg2 748 GHAL TLBE Eojedas
FAE A5l 4 dPo] FouBol TE ARAT Bho Aot Agsos xAHell,

Reducing the Overhead of Virtual Address Translation Process

Jongjung Woo!

ABSTRACT

Memory hierarchy is a useful mechanism for improving ihe memory access speed and making
the program space larger by layering the memories and separating program spaces {rom memory
spaces. However, it needs at least two memory accesses for each data reference ! a TLB(Transla.
tion Lookaside Buffer) access for the address translation and a data cache access for ithe desired
data. If the cache size increases to Lhe multiplication of page size and the cache associativity, i is
difficult to access the TLB with the cache in parallel, thereby making longer the critical timing
path in the processor. To achieve such parallel accesses, we preseni the hybrid mapped TLB which
combines a direct mapped TLB with a very small fully-associative mapped TLB. The former can
reduce the TLB access time, while the latter removes the conflict misses from the former. The
trace-driven simulation shows that under given workloads the proposed TLB is effective even
when & fully-associative mapped TLB with only four entries is added because the effecls of its in-

creased misses are offset by its speed benefiis.
1. Introduction

The processing power of a computer is
closely related to the speed and the capacity
of its memory system. An ideal memory
system should provide a very short access
time as well as a very large address space.

- This Paper was supported by the Grants for Professors

of Sungshin Wemen's University in 1995.
13 8 W ddodridda 2ae

=EHT 119959 94 209, AAbE [1995 119 309,

To achieve these ends at a reasonable cost,
most computers today rely on cache memory
and on virtual memory. Cache memory pro-
vides a fast and effective memory access
time by exploiting the property of locality. Its
effecliveness is primarily dependent on its ac-
cess time and its miss ratio. On the other
hand, virtual memery provides users with the
appearance of a memory with as large as the
swapping space and as fast as the physical

memory. Each data reference in the memory
hierarchy sysiem requires at least two trans-
actions: a TLB access and a cache access,
thus affecting the processor cycle time which
is one of the most important factors in re-
cent microprocessors. Reduction in. the proces-
sor cycle time provides the improvement of
the system performance, given the same ar-
chitecture. Therefore, despite having worse
miss ratios, direct mapping becomes popular
in the current cache because as the cache
size Increases, direct mapping provides data
references faster [1]. Bul, if real address
caches which are direct mapped and larger
than a page size are employed with tradition-
al address translation, address translation can
not be performed in parallel with cache ac-
cesses. In order to achieve this, we use a
hybrid mapping in the TLB. Hybrid mapping
combines direct mapping and fully-associative
mapping in a single memory. The hybrid
mapped TLB consists of a relatively large di-
rect mapped TLB and a relatively small
fully-associative mapped TLB. This idea was
proposed for the caches by both J. Woo [2]
and N. Jouppi {3]. They showed that their
proposed caches reduced the miss rate a lot
on their benchmarks. This idea goes further
by applying to the TLB, thereby reducing the
overhead of the address translation process.
This paper shows that the hybrid mapped
TLB can eliminate the address translation la-
tency from the processor’s critical path with-
out deteriorating the overall performance

even when a small fully-associated mapped
TLB is added.

2. The Overheads of Address Transla-
tion Process

In hierarchical memory systems, the loca-
tion of the memory management unit{MMU)

)
&
+
s
1S

2
=l

ol th3l 2o B8 119

15 an important design consideration. Since
cache memories are also located between the
processor and main memory, there are iwo
possible locations for the TLB. If the MMU is
localed in between main memory and the
cache, the cache should be indexed with the
virtual addresses. It is called a wvirlual
address cache, while the other s a real
address cache. The processor generates virtu-
al addresses bul the data are stored in main
memory based on real addresses. The MMU
interfaces between processors and main mem-
ory by translating virtual addresses inlo real
addresses. Hence, we assume that the MMU
performs address translation on a page basis
without loss of generality. In addition, we dis-
cuss only the data TLB because the instruc-
tion TLB generally exhibits good performance
[4].

For the real address cache, a TLB access
must occur before a cache access. The
address 1translation consists of the effective
address calculation and the TLB access. The
contemporary RISC processor is typically im-
plemented with five basic execution steps: in-
struction feltch(IF), instruction decode and
register fetch(ID), execution and effective
address translation(EX), memory access
(MEM), and write back(WB) [5]. The TLB
access 1s typically performed in the MEM
pipeline stage, which can become the slowest
of all pipeline stages in the processor. When
the cache size is relatively small, this problem
is not critical. The reason is that the cache
access(MEM stage) can be performed in par-
allel with the TLB access because the cache
can be indexed only by the page displace-
ment which remains invariant across the
address translation process. These days, with
advances in VLSI technology, the cache size
tends to grow larger than the page size. If
the cache is larger than the multiplication of

po B R S HRIER] =] B3R AIS(96.1)

the puge size and the cache associalivity,
raches cannot be indexed only by the Invari-
ant field of the virtual address in the conven-
uonal TLB, which makes the MEM stage the
slowest. There are several approaches to elim-
inate the TLDB access latency : using virtual
address caches, making the page size larger,
increasing the cache associativity, and divid-
ing the stage of memory access pipeline.

Virtual address caches are attractive be-
cause they can be accessed withoul address
iranslation. Unfortunately, they have lows of
disadvantages [5, 6, 7, 8]. Two dislinct virtu-
al addresses are mapped onto the same physi-
cal address and the same virtual address can
be mapped onto distinct physical addresses,
which is called the synonym problem. It also
complicates keeping protection information
with the data cache bhecause the page protec-
tion bits and other fields need to be included
in each cache block of a wvirtual address
cache. In addition, it has to flush the cache
on process switches. Larger pages make the
page displacement wider. Thus we can use
large caches for parallel address translations.
In the DEC MultiTitan, the large page size is
used for this purpose [3]. However, large
pages make the protection granularity coarser
and memory fragmentation problem worse be-
cause the pages can be larger than what the
program needs. Higher cache associativity
makes the cache slower but in IBM 3081, a
high degree of associativity 1s used for in-
creasing the cache [9]. Finally, increasing
the number of memory access pipeline stages
provide several problems such as clock skew
and latch overhead, longer load/store, and
slower branches [8].

There are other alternatives for improving
TLB performance : supporting multiple page
sizes [10], using base address caches [5],
and the TLB slices [11] The first may not

eliminate TLB latencies and even make memn-
ory management and page replacement poli-
cies complex. The second needs an extra base
address caches with more than 32 entries
even if it can hide TLB access latencies. The
last can wark well only for the second level
cache If the second level cache is shielded by
a virtual indexed primary cache,

3. Hybrid Mapped TLB

Mapping policies are usually classified ac-
cording to their associativity. For a given
size, a higher degree of sel-associativity gener-
ally yvields a better miss ratio but leads to a
degradation of effective memory access time,
while a lower degree of sel-associativity
vields a reduction of effective memory access
times but leads tc an increase of cache miss
ratios [1,2,3,6,8]. Owing to the above con-
flicting relation, the iraditional caches will
not be able to keep up with the speeds of
modern microprocessors. 1o improve both
miss ratio and access time at the same time,
the concept of hybrid mapped caches combin-
ing two differently mapped caches in a single
cache was proposed [2, 3]. One, called a
master, is large and direct mapped, while the
other, called a slave, is relatively small and
fully-associative mapped. Since the master is
direct mapped, it is tiypically cheaper and
faster;but its hit ratio is generally not belter
than the hit ratios of the other mapping
schemes because a later relrieved entry is
more likely to be discarded in direct mapping
than in other mapping. To compensate for
these conflict 1ulsses, a small size slave is em-
ployed and it contains the entries displaced
from the master. Note that hybrid mapping
does not need to adhere to the “inclusion
property” because there are no data which
helong to both the master and the slave.

The TLB is a special cache for the virtual
address translatic.. luodern microprocessors
typically make vuse of fully-associative mapped
TLBs In order to obtain low miss ratios [12,
13]. But such TLBs provide relatively long
access times. Henceforth, by applying the
hybrid mapping policy for virtual address
translation, we can eliminate or hide the time
for virtual address translation, thereby reduc-
ing the critical path of accessing the real
address cache. Especially, hybrid mapping is
more useful for data references because more
conflicl misses of data are eliminated by the
slave cache than those of instructions [3].

(Figure 1) illustrate two organizations of
hybrid mapped TLBs; one is indexed by part
of the virtual page number and the other is
by partial contents of the load/store instruc-
tion such as its base register identifier [5,
14, 15] and its reference offset. The partial
contents of the load/store instruction are at-
tractive because the TLB can be accessed be-
fore the calculation of the virtual page num-
ber. However, the effectiveness of partial con-
lents of the load/store instruction as a TLB
index relies on how rarely the base register
s modified. In this case, the virtual page
number retrieved from the master TLB is dif-
ferent from the the virtual page number cal-
culated by the processor when the base regis-
ter 18 modified. Note that the traditional TLB
can only be indexed by the full conlents of
the virtual page number unlike the hybrid
mapped TLB. From the speed point of view,
the master TLB has some improvement fac-
tors as below:

- Since the master TLB is direct mapped, in
most cases it is faster than
TLBs.

- When the master TLB is indexed by the
partial contents in the load/store instruc-

traditional

THe T WE N LE el Eel 1y

tion, the TLB access can be- performed be-
fore the MEM stage. -

- When part of the virtual page number is
emoloyed as a TLB index, the time for
comparing the virlual page number in the
master TLB with the incoming virtual page
number from the processor can be hidden
because of the following reason. Generally

virlual — real addr.

adelr, stall to data cache

—j COMrRIe T L
vilttial real
page Page
eut number twtuher
aof
. - - a2
vitul G rer T3
adelr. elirger map) ——
L
¥
[comp | virtual page l real page l

slave TLB(Mully associative map)

Gy with vital page number

contents in _— real addr,

wall 1o cita eache

campare N\ T

L/S instruction

]
1
1
1
1
[}
1
' -
! vittual real
i page page
i
' number nwmber
\
-
(r
R master TLLB
. (dhireet map)
virual |
-l]
[cnmp l virtual page l real page |
slave TLR(Mully-associative map)

(h) with L/8 instructions

(Fig. 1) Hybrid Mapped TLBs

120 SEREEHDEE] 22X H3H M1E(98.1)

the time for TLB references consists of the
time for two operations: directory compari-
son and appropriate entry access. In ihe
traditional TLB, those two
should be performed in the forward se-

operations

guence, namely an entry access after a di-
rectory comparison. The reason for this ac
cess order is because the appropriate entry
access 1s dependent on the result of the
directory comparison. On the other hand, in
the direct mapped TLB, its operalions can
be reversed for decreasing the effective
cache access delay. As a result, the opera-
tion of TLB directory comparison can be
overlapped with the cache reference.

Therefore, if the hit ratio of the master
TLB is reasonably high, the effective access
time of the hybrid mapped TLB is shorier
than the traditional TLB. From the space
and cost point of view, fully-associative
searches from translation tables are costly in
terms of the logic gate count. Given the
same number of hybrid mapped TLB entries
and traditional TLB entries, the smaller sili-
con area is used in the hybrid mapped TLB
rather than in the traditionally mapped TLB
because of a smaller number of directory
comparétors required in the master TLB.

The desired data are obtained through two
steps i @ virtual address translation and a
cache access. We assume that the TLB is
always hit on the master TLB or the slave
TLB because the miss ratios of hybrid
mapped TLBs are almost negligible as shown
in Section 4.2. If a miss is encountered on
the hybrid mapped TLB, its procedure is
almost the same as the procedure of tradi-
tional address translation. The followings are
the procedures of the data reference opera-
tion for the hybrid mapped TLBs.

TLB indexed by the virtual page number

(1) Using a subset of virtual page bits, only
one page tlable entry is read out from
the master TLB. Each entry in the mas-
ter TLB consists of a virtual page num-
ber (V 7m) and a real page number (R7T
m). At the same time, for the slave TLB,
all virtual page numbers (V Ts) are read
out.

{2) The cache can be accessed by using K7m
and the page offset regardless of the va-
lidity of R7m In parallel, the R7=m is
compared with the incoming virtual
address. For the slave TLB, all V' 7s are
also compared with the incoming virtual
address.

(3) I the R7m matches the incoming virtual
address, the cache acress by RTm 1s
valid; otherwise, the processor stalls the
pipeline for one cycle, while another
cache access can be initiated by using
the RTs, if the slave TLB is hit.

TLB indexed by the partial contents of the
joad/store instruction

(1) Using the partial contents of the load/
store instruction, only one page table
entry is read out from the master TLB.
In the meantime, the virtual address is
caleulated from the base register and
the reference offset.

{2) The cache can be accessed by using Rtm
and the page offset regardless of the va-
lidity of Rrm In parallel, the R7= is
compared with the calculated virtual
address. For the slave TLB, all tags (V
Ts) are read out.

(3) If the RTm matches with the calculated
virtual address, the cache access by RT
m is valid; otherwise, the processor stalls
the pipeline for one cycle. In parallel,
for the'slave TLB, all (V Ts) tags are

compared with the caleulated virtual
address.

(4) If any tag in the slave TLB matches
with the calculated virtual address, the
cache access i1s performed by R7s.

If both TLBS are missed, the processor is
stalled and iniliates them to reload the miss
ing page table entry. Note that if there is a
miss on the master TLB and a hit on the
slave TLB, the access penalty is just one
cyvele and if both TLBs are missed, the ac-
cess penalty is the same as the conventional
penalty.

4, Performance Analysis

The trace-driven simulation is a powerful
tool which allows the study of several aspects
of computer design and performance [6]. We
used trace-driven simulation In order to ex-
amine the effectiveness of the proposed TLB.
The traces were collected on a Sun Sparc
workstation using the Spa package, which in-
terprets the program execution to produce
address traces. We sampled the first one bil-
lion instruction traces if the benchmark takes
more traces than one billion traces for each
cases. These sizes of traces can be sufficient
to reduce the effect of compulsory misses.
The sampled traces are passed into the TLB
simulators through the UNIX pipeline without
storing them. The LRU.replacement policy is
assumed for the slave TLB, which does not
make the implementation expensive because
their sizes are too small. The workloads we
used are SPEC benchmarks (release 1).

4.1 Performance Metrics

The most commonly used metric of TLB
performance is miss ratio, the probability
which the desired information is not found in

ThabFa BB DE B REol Y 123

the TLB. But it might be misleading because
the effects of cycle stalls caused by TLB
misses for dala are different from those of
cycle stalls caused by cache misses for in-
structions. Given an insiruction set, a per-
formance metric that is directly related to
the average cycles per Instruction (CPI) is
the misses per total executed instructions,
MPI [16]. The equation for MPI can be writ-
ten as,

total number of misses

MPI:total number of instructions executed

Ancther commonly used metric for TLB
performance is effective access time, the
average latency time between when the pro-
cessor requests a page table entry and when
it receives that page table entry. But since it
has a similar problem to the miss ratio, we
mtroduce yet another performance metric, the
average time of the underlying pipeline stage
(TPS). The TPS c¢an be expressed as fol-
lows:

tpipc p :nxt+MPIXt (2)

where #n, #,,,.(p), t. and ¢, are the num-
ber of cycles per instruction with ng TLB
misses, the average time of p stage, the pro-
cessor cycle time, and the average cache pen-
alty, respectively. Our relevant pipeline stage
is the memory access(MEM) stage of the
pipeline for the data.

4.2 Simulation Results and Analysis

To demonstrate the effectiveness of the
hybrid mapped TLB, we analyze the effects
of cycle stalls caused by misses of the master
TLB. If such effects are not offset by the
speed benefits of the master TLB, our
scheme must be advantageous.

124 BEREPA2IEE| =RA RS M1E(961)

(Table) MFl for Master TLBs

TLB| 16 32 64 128 256
page
4K || .08425 | 05319 | .03229 | .01203 | .00670
8K || .08653 | 04178 | 02012 | .00746 | .00080
16K || .09024 | 04243 | .02093 | .00121 | .00000
32K || .05033 | .02395 | .01127 | .00065 | .00003

{Table 2) MPI for Hybrid Mapped TLBs and Tradition-
al TLBs

TLB

20 | 36 | 68 | 132 | 260
page

4KB | hybrid {.00106 | .00037 {.00012 | .00006 | .00004
ssoc ||.00062 | .00019 | 0006 |.00003 | .00000
8KB | hybrid {|.00048 {.00017 | .00006 | .00003,.00000
assoc ||.00025 |.00006 | .00002 | .00000 | .00000
16KB| hybrid {|.00032 |.00007 | .00003 { .00001 {.00000
assoc ||.00010 |.00002 |.00000 |.00000 | 00000
32KR| hybrid |[.00010}.00005 |.00001 | .00000 |.00000
assoc |.00003 | .00000 | 00000 |.00000 { .00000
- The slave TLR of hybrid mapping consists of four
entries.

(Table 1) shows the weighted arithmetic
average MPIs" of the master TLBs for the
different page sizes (4~32K bytes long) and
number of TLB entries (16~256). This table
shows that the use of larger pages or more
TLB entries can significantly improve the
performance of TLB. Like (Table 1}, {Table
2) shows the average MPI of the hybrid
mapped TLBs and the traditional TLBs. The
hybrid mapped TLBs are composed of the
master TLBs in {(Table 1) and the slave
TLBs with four entries to permit a fair com-
parison because the hybrid mapped TLBs and
the traditional TLBs have the same number
of entries. As shown in {(Table 1) and 2,
only four TLB entries of the slave TLB are
sufficient to eliminate most conflict misses of
the master TLB because their differences are
mostly less than 0.01 %. According to Eq.(1)
and (2), we can express the average time of
the memory access pipeline stage for the tra-
ditional TLB, 76 (MEM), as below :

The total number of misses divided by the total number of
simulated instructions for given warkloads.

0 (MEM)=nxt. (TLB " +MPI(TLB 0)x{,
... (3)

where MPI(TLB ¢) denotes the MPI for
the given traditional TLB organization. In a
similar way, the average time of the memory
access pipeline stage for the hybrid mapped
TLB, 7. (MEM), can be given as:

L (MEM) = (n+MPI{TLB ,))x t(TLB)+
MPI(TILB ,) X f,r-eereenmmarsassssssrasmasaasensons (4)

Here MPWTLB ,) and MPI(TLB ,) refer
to the MP! for the given master TLB and
the hybrid mapped TLB. From both equa-
tions, we can ignore the second item because
MPI({TLB ,) and MPI(TLB ,) are tco small
as shown in (Table 2). Thus, compared to
Eq.(3) and (4), the processor cycle time of
the hybrid mapped TLB can be justified if
the following equation is satisfied:

X tC(TLB n)

M
te(TLB)= S fp1 (LB .,

Here we call n/{z+MPI(TLB .)) the
maximum effective cycle time ratio of the
hybrid mapped TLB. Therefore, the usefulness
of the proposed TLB scheme relies largely
upon the MPI of the master TLB if given #.
(Figure 2) shows mre:a—é—rﬁgﬁs “which illus-
trate the relationship between the maximum

effective cycle time ratio and the number of
master TLB entries for three #’s(0.5, 1.0,
and 2.0). These graphs reveal that for typical
RISC microprocessors (CPls=1), the maxi-
mum effective cycle ratios are generally
about 0.9835 for 128 TLB entries, 8 K byte
pages, and CPI=1.2. In other words, the pro-
posed scheme can be justified if f (TLB ,)
is smaller than 0.9835x £. (TLB o). This time
reduction can be achieved by reducing TLB
access time and hiding the comparison laten-
¢y of the virtual page number in the master

To/la

[—

95 - 7

2 64 128 256

number of entries(CP1=0.5)

Tn/To
l —]

951

a2 64 128 256
number of entries(CPl=1)

Tn/To
1 -

4 KB pages
95—
----- R KB pages

9~ e 16 KB pages

---- © 32 KB pages

43 T 1 T
32 64 128 256

mumber of entries(CPI1=2)

(Fig. 2) Maximum Effective Cyde Ratio

JHeFas BE DO e Reel B g

TLB with the incoming virtual page number
from the processor. Furthermore, if the num-
ber of master TLB entries is larger than 64,
the proposed scheme can be effeclive for the
superscalar processors (CPIs{1) because even
a small amount of cycle time improvement
can be justified. Therefore, we can tell that
for real-addressed large caches, the address
translation latency can be reduced by employ-
ing the hybrid mapped TLB scheme with lit-
tle extra overhead or die size.

5. Conclusion

In most processor designs, the cache access
(real address caches) forms the critical path
of the execution pipeline, thereby determining
the processor cycle time [8]. To reduce the
effect of the TLB on its critical path, we
present a hybrid approach to TLB mapping
which combines a direct mapping with a
fully-associative mapping. In a hybrid mapped
TLB, most TLB hits are achieved in the mas-
ter TLLB and most conflict misses of the mas-
ter TLB are removed by the small slave
TLB. Thus, the master TLB provides fast
access times, and the slave TLB assists to

eliminate the most conflict misses. Further-
more, since the master TLB can perform

even its tag comparison with its underlying
cache access in parallel, its performance can
be significantly improved for data references.
Especially, the hybrid mapped TLB can be
very desirable if it is indexed by partial con-
tents of the load/store instruction because the
TLB is accessed not at the memory access
pipeline stage but at an earlier stage.

Our simulation results show that most con-
flict misses of the master TLBs are removed
by their slave TLBs, even only four slave
TLB entries. The hybrid mapped TLB is ap-
propriate for the typical microprocessor if the

120 B EHEMEEE =RA M3 AM15(951)

offective cycle ratio is under 0.8835 for the
128 TIL.B entries and 8 K byle pages. We
can complelely hide the TLB access latency
when the TLB is a hit in the master, thereby
reducing the processor cycle time. '

References

[1] M. Hill, “A Case for Direct-Mapped
Caches,” Computer, pp.25-40, Dec. 1988

[2] J. Woo, “Hybrid Cache Mapping,” Univ.
of Texas al Austin, Thesis, May 1990

[37 N. Jouppi, “Architectural and Organiza-
tional Tradeoffs in the Design of the
MuliiTitan CPU,” The 15th Int'l Symp.
on Computer Architecture, pp. 281-288,
1988

[4] J. Chen, A. Borg, and N. Jouppi, “A
Simulation Based Study of TLB Per
formance,” The 18th Intl Symp. on
Computer Architecture, pp. 114-123,
May 1992

[57 T-C. Chiueh and R. Katz, “Eliminating
the Address Translation Bottleneck for
Physical Address Cache,” in ASPLOS-
V, pp. 137-148, Oct. 1992

[6] A.Smith, “Cache Memories,” ACM Com-
puting Surveys, 14(3), pp-473-530, 1982

[7] V. Knapp, “Virtually Addressed Caches
for Multiprogramming and Multiproces-
sing Environments,” Univ. of Washing-
lon, TR85-06-02, June 1985

[87 J. Hennessy and D. Patterson, Computer
Organization & Design The Hardware/
Software Interface, Morgan Kaufmann
Publishers, 1594

[9] R. Gustafan and F. Shapiro, “IBM 3081
Processor

Unit : Design Considerations

and Design Process,” IBM Journal of

Research and Development, 26(1), pp
12-21, 1882

[107 Madhusudhan Talluri, et al, “Tradeoffs
in Supporting Two Page Sizes,” The
19th Int'l Symp. on Computer Architec-
ture, 20(2), pp-415-424, 1992

[11] G. Tavlor, P. Davies, and M. Farmwald,
“The TLB Slice-A Low-Cost High
Speed Address Translation Mechanism,”
The 17th Int'l Symp. on Computer Ar-
chitecture, pp.355-363, 1990

[12] S. Mirapuri, M. Woodacre, and N.
Vasseghi, “The MIPS R4000 Processor,”
'EEE Micro, 12(4), April, 1992

[137 D. Dobberpuhl, “A 200MHz 64b Dual-
Issue CMOS Microprocessor,” The 39th
nt'l Solid-State Cireuits
1EEE, pp.106-107, Feb. 1992

[14] J. Pomerene, T. Puzak, et al, “Mecha-
nisms for Acceleration of Cache Refer-
ences,” IBM Technical Bulletin, 25(3B),
pp.1740-1745, Aug. 1882

[15] K. Hua, A. Hunt, et al, “Early
Resolution of Address Translation in

Conference,

Cache Design,” IEEE mt’l Conference on
Computer Design : VLSI Computers &
Processors, pp.408-412, Sept. 1990

z A

-?_.- [+) o
19823 #AEgx @Az
@At
19903 Univ. of Texas at
Austin ®7] = #AFEH &
3} Aa}
7Y 1993y@ Univ. of Texas at
Py Austin B7] 2 HFH ¥

o
g
3 ¥}

19933 ~ & x] AaddodAdidgn 3T
HaRol: EEHE A2y, AFH FE, FRHA

