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A Revised Fractal Technique With Fixed Midpoints
For A Specific Terrain Model

Yong-Deok Noh'

ABSTRACT

In 2D and 3D computer graphics, fractal techniques have been applied to terrain models. In general, a
specific 3D terrain model such as Cheju or Uleung Island could not be formulated by statistical fractals
owing to the random effects. However, by locating the control points on the edges and the surface of a
specific terrain such as Cheju Island, a similar shape of the terrain model can be simulated. This paper
presents the way of formulating a specific 3D terrain model by the statistical fractals with fixed mid-

points.
1. INTRODUCTION

Generating 3D objects or structures is an im-
portant area in computer graphics. One way of
representing 3D objects is to use 3D polygon
mesh modet of an objecl. To dercribe an object,
a large number of dala should be prepared to
pet the polygon mesh model. For example, the
Utah teapot, a familiar object that has become a
kind of benchmark in compuler graphics, has
the data consisting of 306 world coordinate ver-
tices[6]. In this case, the more data we have,
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the mare realistic object we can obtain.

A specific terrain model such as Cheju Island
could be formulated by preparing data of the
3D world coordinate vertices too. This technique
assumes that objects are collections of polygons
whose surfaces are described by linear func-
tions or higher order polynomials such that this
method has established itself as a convenient
and powerful technique for modeling smooth
and man-made specific shape such as car, build-
ing etc. However, preparing the 3D world co-
ordinate vertices of 3D objects are generally
very tedious job and how many data should be
prepared is dependent upon the level of detail,

In general, many objects, such as terrain,



mountains and clouds, have irregular or frag-
mented features[3]. Such objects have been
modeled using the fractal geometry methods de-
veloped by Mandelbrot [3]. A fractal geometric
curve conlains an Infinite variety of detail at
each point along the curve. Mandelbrot used a
term fractal geomelry which was used to de-
scribe the attributes of certain natura! phenome-
na like coasllines. For example, trees in a forest
landscape can be sensibly generated procedural-
L.

In 3D computer graphics, fractal techniques
have been applied to terrain models. Fractal
models have become popular for recreating a
wide variety of the shapes {ound in nature[5].
Most fractal models feature a stochastic compo-
nent, making them well suited to generating
nonsmooth, irregular shapes, such as mountai-
nous terrain[ 2.

Most fractal terrain models have been based
on one of five approaches: midpoint displace-
ment, Poisson faulting, Fourier filtering, succes-
sive random additions, and summing band —lim-
ited noises[7]. The approach presented here is
of the first type, in which the midpoints are se-
lected by deterministic manner.

2. RELATED WORK

Midpoint displacement algorithms or whal we
call, subdivision algorithms, are based on a for-
mulation by Fournier et al. [1,2] that recur-
sively subdivides a single line segment. These
methods are standard in fractal geometry.
Musgrave, Kolb, and Mace[ 7] classify the vari-
ous midpoint displacement techniques by locali-
ty of reference: wireframe midpoint displace-
ment, tile midpoint displacement, generalized
stochastic subdivision, and unnested subdivision.

Wireframe subdivision is used in triangle sub-
division scheme and involves the interpolation
between iwo points in the subdivision process
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while tile midpoint displacement involves the in-
lerpolation of 3 or more non-collinear points.
The above two methods are generally efficient
and easy to implement, however have fixed
lacunarity and are nonstationary due to nest-
ing.

Generalized stochastic subdivision interpolates
several local points, constrained by an autoco-
rrelation function[8]. Instead of displacing each
midpoint independently, Lewis adds correlated
Gaussian noise. This rnoise alleviates the
artifacts due to spatially nonstationary statis-
lics across triangles that are sometimes evident
with the other methods. Miller proposed an
unnested subdivision wherein unnested means
that successive levels of subdivision retain no
points from previous levels{ 97]. However, this is
not striclly a midpoint subdivision scheme. The
former is flexible but very hard to implement,
while the latter features fixed lacunarity and is
simple 1o implement.

Musgravel 7] presented “noise technique™whi-
ch features locally independent control of the
frequencies composing the surface, and thus
local control of fractal dimension and other sta-
uistical characteristics. This method is intermedi-
ate in difficulty of implementation. Szeliski and
Terzopoulos[ 10] developed “constrained fract-
als”, a hybrid of splines and fractals which inti-
mately combines their complementary features.
Their method combines deterministic splines and
stochastic fractals to inherit complementary fea-
tures, The constrained fraclals avoid the artif-
acts that are introduced during the subdivision
process, and they can assimilate constraints at
any resolution.

The common approach mentioned above for
obtaining some control is to first triangulate a
given set of points, then add fractal texture by
recursively subdividing and randomly perturb-
ing the subtriangles. But this method produces
annoying visual artifacts because the spatial
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slatistics are non stationary across the original
triangle boundaries. Therefere, the above meth-
ods are very suitable for formulating free-form
shape but not applicable to & specific object
[10]. This paper, therefore, proposes a revised
subdivision fractal technique with fixed mid-
points which simultaneously provides both con-
trol and detail. The midpoints prepared are
usually located on the edge or surface on a spe-
cific object. With this method, a realistic and
visually satisfactory shape of a specific terrain
model could be generated from a very small da-
tabase.

3. THE ALGORITHM WITH FiXED MID-
POINTS

In statistical fractals, a recursive subdivision
procedure is applied to each facet, to a required
depth or level of detail, and a convincing terrain
model results. Subdivision in this context means
teking the midpoint along the edge between 1wo
vertices and perturbing it along a line normal to
the edge [6]. The result of this is to subdivide
the original facets into a large number of small-
er facets.

To extend this procedure to triangles in 3D
space, each edge is treated lo generate a dis-
placement along a midpoint vector that is nor-
mal to the plane of the original facet. And each
facet has a random orientation in 3D space
about the original facet orientation. Using this
technique we can take a smooth pyramid, say,
made of large triangle faces and wurn it o a
rugged mountain or a free-form terramn sur-
face.

The recursive subdivision algorithm applied to
trianigles in 3D space need 3 basic vertex poinis.
These points are not altered as the procedure is
performed. Mid-points which are generated
based on the edges cannot be anticipated be-

cause of their randomness. A midpoint 1s gener-
ated by repeatedly applying a specified subdivi-
sion algorithm to points within a region of a
space.

Although the recursive subdivision algorithm
can proceed infinitely, a terrain surface is usu-
ally generated with a finite number of itera-
tions. This number of ileration can be a index of
the level of detail of an object. The amount of
detail included in the final display of the curve
usually depends on the number of iterations per-
formed and the resolution of the display system.
Therefore, the number of triangles and mid-
points are increased as the iteralion proceeds.
The equations of counting the number of trian-
gles to draw and the total number of poinis to

compute are as follows.

N=SK n=2 )
k=1
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n
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where 1 is the number of iterations, Nt and
Np are the number of triangles and the number
of points. Equation (1) shows the minimum num-
ber of triangles to draw the fractal surface.
However, in order to apply illumination model
of determining the lighting and color for each
face to fractal surface, the number of triangles
ta draw is as follows in equation (3).

1
K n=2' (3)
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As shown in equation (2), the total number of
points to draw & terrain model based on trian-
gles in 3D space increases exponentially like 3,
6, 15, 45, 153,, as the number of ilerations in-
creases. The number of midpoints obtained by
the subdivision algerithm are 3, 9, 20, 108,, de-
pending on the number of iterations. If we se-
lect some points as midpoints to reflect the char-



acleristics of an object, we could alleviate the
random effects such that a similiar object could
be formulated.

The midpoint displacement algorithm starts
out with a base triangle and heights chosen at
the three vertices as shown in (Figure 1-a).
The triangle is subdivided into four sublriangles
at the first iteration and three new points are
made as shown in (Figure 1-b). At the second
iteration, 9 new points are made and also
shown in (Figure 1-¢). As shown in (Figure 1),
the sequence of the midpoints is very crucial to
the subdivision algorithm.

(a)

(Figure 1) Midpoints
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By supplying the midpoins in series as shown
in (Figure 1) with the X, Y, and Z value, a spe
cific object or terrain simulation is performed.
From third iteration, the midpoints are made by
the subdivision algorithm withoul ¢onirol points,
therefore, we could get lots of geometric data
describing . the object or {errain. Even though
the random effects are permitled at this time,
the overall structure of a specific shape can be
maintained.

The revised subdivision algorithm with fixed
midpoints are shown in (Figure 2). Even

though there are several ways Lo compute the

double ax[15],av(15],22[157;
int  Max_iter;
mt stack..count=0;
const. resolution;
procedure fractal(x, y, z, roughnessiteration:ireal) ;
begin
if(length of line segment< reselution) then ite-ration
=0 ; if (iteration = 0)
begin
Move 1o firsl point;
Line to second point;
Line to third point;
Line to first point;
end

else
begin
{switch(Max_iter_n) {
case Oinsert 4th,5th,6th midpoints; break:
case 1:
{stack-count=stack_count+1 ;
if (stack_count= 1)insert 7th, 8th,
13th midpoints;
if(stack_count= 2)insert 9th, 10th,
141h midpoints;
if(stack_count= 3)insert 11th, 12th.
15th midpoeints;
if(stack_count= 4)inseri 13th, 14th,
15th midpeints; }
defaull:compute roughness and
midpoints; }
fractal(x,y,z.roughness,iteration—1);
fractal({x,y,z,roughness,iteration —1);
fractal(x,y,zroughness,iteration—1);
fractal(x,y,zroughness,iteration— 1) ;
end
end;

(Figure 2) A revised algorithm with fixed midpoints.
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height of the terrain surface, the height of the
terrain surface is provided in this algorithm by
simply interpolating from the heights of its two
neighbor points and then placed in the usual
fashion. The direction of the displacement of
height is sel normal to the X-Y plane. Note that
the concept of counting stack level is introduced
lo assign the midpoeints values to new points be-
cause of recursive call in (Figure 2).

4. APPLICATIONS-CHEJU ISLAND

Based on the algorithm in (Figure 2), the ter-
rain model of Cheju Island is simulated as an
example. Cheju Island is the largest Jsland In
Korea and located in the south sea of the Korea

{a) 3 vertex poinis

(c) 12 fixed midpaints

(Figure 3) Cheju Island with Fixed Midpomnts

Peninsula. The surface of Cheju Island is rela-
tively smooth and the ML Hanla is located in
the center cf Island.

To depict Cheju Island by the statitical
fractals, 3 vertex points are selected as shown
in (Figure 3-a). Based on these points, imagi-
nary 3D geometry data of Cheju Island are
made by the recursive subdivision procedure.
(Figure 4) shows the terrain surface generated
by the algorithm with w=0.5 and N(i)=5
where w is the value of weighting factor and N
11} is the number of iterations.

QOut line in (Figure 4) indicates the shape of
Cheju Island drawn by the geometric data ob-
tained from Cheju Island contour map. Given
ihree vertex poinis, a fractal surface is generat-
ed for the area between the vertex points. (Fig-
ure 4) shows that the shape of Cheju Island
rawn by geometric data and the shape of
Cheju Island drawn by the fractals are quite dif-
ferent. Differences in the appearences of these
objects are due to the kind of random effects
used 1o provide object irregular features. To re-
duce the amount of differences, 3 midpoints of
the line segments are forced lo locate on the
outline of Cheju Island as shown in (Figure 3-
b). In (Figure 3-c), 12 midpoints are selected to
draw Cheju Island.

(Figure 5) shows the shape of Cheju Island
with 3 vertex and 3 midpoints wherein w=0.3
and N(i)=5 are used. The value of weighting
factor is reduced by 0.2 compared to that of
(Figure 4.) This is because the polygon made
by 3 vertex and 3 midpoints are closer to the
coastline of Cheju Island than the triangle made
by three vertex points case. The closer 1o coast-
line, the less rugged liné segment is needed.

(Figure 6) shows the top view of Cheju Is-
land generated with 3 vertex and 12 midpoints.

The weighting factor is —0.1.and the number of
ilerations is 5. In this case, differences in the

shape of two objects are sharply reduced be-



cause ¢ the added midpoints. Even though the
7 values of points in the terrain are interpolated
from the Z values of its two neighboring points,
the randomness of Z values are also given by
the weighting factor. Therefore, we could get
the similar shape of Cheju Island modeled with
1024 faces made by 3 base vertex points and 12
fixed midpoints by the algorithm. When taking
a closer view of the terrain, the surface no long-
er appears flat. (Figure 7) depicts the front
view of Cheju Island shown in (Figure 6).
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(Figure 6) Surface generation with 12 midpoints

Y —

(Figure 7) The Front View of Che island
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5. SUMMARY

Many techniques are used to draw an object
on a computer. Some objects must be drawn in
detail, but the others are not necessarily. In this
paper, a revised fractal method with fixed mid-
points is presented. By locating the control
points on the edges of an object, we could get
not exactly the same but the similar shape of an
cbject. As a case study, Cheju Island has been
considered in the paper. Cheju Island has
smooth coastline and the relatively flat terrain
surface, Therefore, the shapes similar o the
Cheju Island could be made by assigning a small
weighting factor.

Even though we could get the similar shape
of an object by the above method, there are sev-
eral drawbacks. First, how to selecl the coniral
points on an object and how to choose the value
of weighting factor are uncertain. Secondly, be-
cause of randomness, only the similar shape of
an object can be obtain. Finally, the geometric
data generated by the above method is an imag-
inary data rather than real data such that we
cannot use the data in GIS,
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