SIMD ZREMOIM 20! WA =2 AIBH0IM 345

SIMD HFedell A 854 WE A = AJEg o)A
H o ot B

e o
VLSI B2 3% 2 YAxs}l Fobe] gah o) Se) AEo] ALEHE =g A B ol AL s Akl
%ol ZArk & =EoINE SIMD B4 AEH PolA B =3 ABHol4e THS 9o BaNe 7

ARTE, TR FS AN G HEA HEA) HFEA CM24o A S5 AAE AN GL o]B 24 E}
ke fzh:}.

Efficient Parallel Logic Simulation on SIMD Computers
Yunmo Chung

ABSTRACT

As the complexity of VLSI circuits has increased, a lot of simulation time for verifying their correctness has been
required. This paper presents efficient parallel logic simulation protocols, data structures, algorithms to implement
fast logic simulation on SIMD parallel processing computers. The performance results of the presented schemes on

CM-2 are given and analyzed.
1. Introduction

This paper presents efficient simulation paradigms
and dala structures for parallel logic simulation based
on the characteristics of gate-level logic simulation.
The event-driven simulation protocols investigated are
synchronous simulation, conservative simulation, and
optimistic sirnulation. Some variations are considered
to implement the simulation techniques efficiently on
massively parallel SIMD(Single Instruction Multiple
Data) computers.

Efficient event queue manipulations are critical on
massively parallel SIMD computers since array access

operations are, in general, slow. Circular FIFO

13 3 AN AF e
SEAFI19959 89 299, AL E 19964 12 5%

(First-In-First-Out) kists are used as event queues in
both synchronous and conservative simulation. As an
efficient event queue structure for optimistic simu-
lation, we present a circular binary search queue
structure which allows binary search on a circular list.
Advantage and disadvanlages of the proposed tech-
nique will be discussed.

The logic simulation protocols were implemented in
the CM-2 with 32K processors. Some ISCAS'85 and

ISCAS’89 benchmark circuits are used as test circuits.

2. Related Work

A simple approach to parallel implementation of
logic simulation is to use vector machines. However,

it has been shown in [6, 17] that veclorization

techniques for logic simulation can achieve very hmited
parallelism. Distributed event-driven simulation
techniques offer the mosl promise.

In the well-known Chandy-Misra conservalive
simulation algorithin, deadlock management is a
major problem in MIMD (Multiple Instruction Mulliple
Data) environments, and has been investigated in [9,
10. 17, 18). Soule and Gupta [18] classified the types
of deadlocks in digital circuit simulation to reduce
deadlock occurren'c::. and reported simulation resulis
on a Multimax. They observed that conservative
simulation with null messages 1s incfficient on the
MIMD machine. In [20]. 2 new conservalive simu-
lation algorithm, called YADDES, is proposed, which
uscs a dataflow network 1o avoid deadlocks.

In Time Warp. several techniques have been
rraposed in [13, 15] 1o reduce the storage overhead
and 0 ack problems. Moving Time Window (MTW)

ropess §ss g eemil-oplimistic approach to reduce
< 2 'eok tiequeney and the space overhead of
iime Woarp. '

Comparisons of the perfermance of synchronous
simulation., conservative simulation, and optimistic
simulation techniques have been reported based on
actual implementation on MIMD machines: Trans-
porter-based multiprocessor with 8 nodes [16] and
BBN Butterfly with 64 processors [11]. Fujimoto [11]
reported that Time Warp outperforms the Chandy-
Misra algorithm in his implementation. Lin ¢t al,
proposed a performance comparison model of parallel
logic simulation in a MIMD environment. They
showed that Time Warp always outperform the
Chandy-Misra algorithms under the assumptions of
zero overhead of rollback and state saving. Il has
been known that simulations using Time Warp on
MIMD machines give promising performance in
battlefield simulation [12], digital hardware simulation
[3]. and producer/consumer simulation workloads [1].

When optimistic simulation is implemented on
MIMD machines, fast computation of Global Virtual
Time (GVT) is. very important, but it is nol easy,

Preiss suggests in [16] a token-ring calculation of
GVT. Briner presents in [4] a GVT approximation
algorithm using a tree of processors. Baldwin et al.
present a GVT compulalioﬁ-algorithm with overlap-
ping window concept in {2].

A few results are available for parallel logic simu-
lation in SIMD environments. Result have been
published on parallel simulation of quening models
[14]. circuit simulation [19), and switch-level simu-
lation on the Connection Machine [5]. We have
investigaled logic simulation schemes on a massively
parallel SIMD machine. Since queue structures for
oplimistic stmulalion on massively parallel SIMD
machines are so important, we have developed several
schemes as event queue siruclures, For example, a
daia parallel queue scheme was presented in [7]. In
this scheme. an event is assigned Lo an evenl pro-
cessor and event evaluation is done based on a data
parallel approach. Next, a single queue scheme was
presented which assigns an event queue fo a gate in
{8]. In the implementation. a variation of Time Warp
was presented which uses a single queue at each pro-
cess and computes a lower bound of rollback based
on immediate cancellation to reduce space overhead.
The analysis of local clock advancement in a SIMD
environment, and the effect of moving time window
size on execution time were also reporied in [8]. In
other words. each simulation technique can be
characterized by how much each process is allowed to
advance its simulation clock beyond the current glo-

bal virtual time.
3. Basic Data Structures

As basic data structures for logic simulation on
massively parallel SIMD machines, we consider mem-

ory layout, event queue schemes, and table lookup.

3.1 Memory Layout for Parallel Simulation

Without loss of generality, we can assume that one

gate is assigned to one processor since massively par-

allel SIMD machines have 4 large number of physical
processors and allow users to define as many virtual
processors as possible within available memory capacity.

A process (gate) contains the following information:
[memory layout]

 Local Virtual Time (LVT):the smallest simu-
lation time of unprocessed events in the event
queues of the process.

- Gale information: the information about the pro-
cess, such as pointers to its suceessors.

* Function table:the table for computing output
signals from input signal values.

- Input signals:the current input signals at the
LVT.

- Input buffer:the buffer for storing just arrived
events before pulting them into its evenl queues.

- Event queues: the queues for storing all events to
be processed.

- Other local variables.

In the above memory layout, other local variables
include general temporary variables, such as variables
for an active bit, an output signal, etc. as well as
simulation technique-dependent variables, such as link
clocks and minimum link clocks in conservative simu-
lation. In addition, a global virtual time (GVT), the
smallest timestamp of unprocessed events in all

processes, is computed in the front-end processor.

3.2 Event Queue Assignments

In our simulation, a distributed event queue scheme
is used in which each input port of a gate has its own
event queue. In SIMD, the maximum queue size over
all processors should be estimated and allocated in
advance since dynamic allocation in not allowed. in
general.

3.3 Table Lookup

To evaluate different function of all active gates at

SMD ZREIOIM SEXO gizitia] =2(AISHOIN 317

the same time, the able lookup method is used as in
[7]. Each gate contains a table for the corresponding
function. For example, if there are at most 3 inpuls to
each gate, 8 bits are enough to store each operalion
as shown in (Table 1). In the table, “x” represents

“don’t care” signal.

{Table 1) Function tables for iookup operations

inbits(b; bybs) 000|001 {010 {011 100|101 | 110|111
34nput AND Olo0j0j0;0]|0]|0]T1
320r l-input OR| 0 | 1 1 1 1 1 1 1
2-input AND 010|011 x| x| x| x
I-iput AND (1 x| x| x}x|x|x
Invert Ti0 x| x| x{x|x|=x

4. Parallel Logic Simulation Protocols

In this paper, several variations of distributed
event-driven logic simulation protocols are considered,
A logic circuit can be considered to be a directed
graph in which nodes represent gates called processes.
and arcs (links) indicate connections between the
gates. Each gate propagates its output signals by
sending event messages. Each event is time-stamped
with the simulation time at which it should be

executed.

Definition 1 Simulation Cycle:All processors on
massively parallel SIMD machines are synchronized.
Therefore, each process repeats the same procedure,
which consists of LVT computation, choosing active
gates, event evaluation, new even! propagation, and
queue manipulation. Optimistic simulation may require
an additional step for rollback management. The time
period to perform this procedure is called a sinwdation

cvcle.

The diagram for possible siate changes of a process
is given in (Fig 1). The idle state in the figure

represents that a process is not involved in any of the

318 o2EEMEISE =2 H3T A 25(9%.3)

above activilies. Each simulation cycle is synchronized

in SIMD environments.

Choosing active gates
Event evaluarion

rypical path for a simuladon cycle
== = == possible path

(Fig- 1) Diagrams for possible state changes of & pro-
cess

4.1 Distributed Synchronous Logic Simulation

Distributed synchronous simulation is a synchronous
simulation with distributed event queue. In distributed
synchronous logic simulation, each input port of a
process receives events in mon-decreasing timestamp
order. A circular FIFO queue, rather than a prionty
queue, can be used as an event queue of each input
port, facilitating queue manipulation. During every

simulation cycle, the following algorithm is performed.

[Algorithm SYNCHRONOUS]

1. Each process compules its LVT.
. GVT is computed by talking the minimum LVT

28]

of all processes.
3. Each process whose LVT is equal to the GVT
performs event evaluation and event propagation.

4. Each receiving process performs event insertion.

4.2 Conservative Logic Simulation

In conservative simulation, a process executes

events only if it is certain that no evenl with an

earlier umestamp can arrive. Link clocks and mimmum
link clock are used as defined in conservative simu-
lation. A link clock of each input port of a process is
defined to be the timestarx;p of the most recently
arrived event along that input link. The minimum
link clock of a process is the minimum of link clocks
of all its input ports.

Since the delay of each process is fixed and there is
no preemption in logic simulation, events arrive at an
input link in nondecreasing order of limestamps. A
circular FIFO list is assigned to each input port of a
process as an event queue. The following modified
inputfoutput waiting rules of the Chandy-Misra
algorithm are proposed which exploit gate-level logic
simulation properties:a process execules the evenls
with timestamps equal to its LVT when its minimum
link clock is grater than or equal to the LVT;the out-
put =vents generated can be immediately sent to their
destinations.

Null messages in Chandy-Misra algorithms are
used to avoid deadlock. In contrast to MIMD
environments, where null messages may significantly
decrease the performance of Chandy-Misra algorithms
[18], the null messages in SIMD environments can be
efficiently used because all null messages are sent at
the same time real events are propagated.

In addition, GVT can also be used to further
reduce simulation cycles in conservative logic simu-
lation. All evens whose timestamps are equal to GVT
are execuled even though the Chandy-Misra input
wailing rule is not satisfied. On a SIMD machine,
GVT can be computed easily.

The proposed algorithm exploits features of the
SIMD archilecture:easy computation of GVT and
negligible overhead of null messages. For each simu-
lation cycle, the following steps are performed for

each process:
[Algorithm CONSERVATIVE]

1. Each process computes its LVT.

[28]

. GVT is computed.

3. Each process executes the events with timestarnps
equal to ils LVT when
a)its minimum link clock is not less than LVT or
b)the GVT is equal to LVT;

4. Each active gate performs event propagation.
Each gate which has an updated minimum link
clock and does not propagate any event sends a
null message with the updated minimum lipk
clock.

3. Each receiving process sets the corresponding

link clock to the timestamp of the just arrived

message along the link. If the message is

non-null, event insertion is _performed.

There are three things to be considered to obtain
good performance when we implement conservative
logic simulation using null messages and GVT. First,
all processes whose minimum link clocks are updated
by null messages or events need to propagate new
null messages or events to update link clocks of its
successors in time. Second, at every simulation cycle,
all link clocks should be updated to GVT if they are
smaller than GVT. Finally, null messages with infinite
limestamps need o be sent at the end of each input
vector to inform successors that no further events will
be generated.

The proposed simulation technique can also be
used for logic simulation on MIMD processing
environments. Since GVT computation on MIMD
machines is expensive, Step 2) and 3b) in the above

algorithm might be discarded.

4.3 Optimistic Logic Simulation

Optimistic logic simulation uses LVT differently
from conservative logic simulation, The difference is
that all evenls whose limestamps equal LVT are
executed in optimistic simulation, while the same
events may not be executed in conservative simulation
if the execution is not satisfied. Optimistic logic simu-

lation does not need any link clocks. A simulation

SIMD ZREMUIM S22 WK =r| AIBH0KE 319

cycle of optimistic simulation performs the following
steps:

[Algorithm OPTIMISTIC] ~

1. Each process computes its new LVT.

2. If the new LVT is not greater than its previous
LVT, then rollback procedure, ie. state resto-
ration and cancellation, is performed.

3. Each process with unprocessed events performs
event evaluation and propagation,

4. Each receiving process performs an event inser-
tion operation.

5. Fossil collection is performed if necessary.

The following difficulties must be considered in
implementing the optimistic simulation on a massively
parallel SIMD machine. First, optimistic simulation
has a storage overhead problem because information
about all events whose timestamps are grater than
GVT must be kept. Moreover, each process has three
queues:input, output, and state queues. Second,
processors of most massively parallel SIMD machines
have relatively small focal memory capacity, Finally,
array access time on the CM-2, our target machine, is
slow because its processors are bit-serial. Therefore,

efficient storage management is very important.

4.3.1 Immediate Cancellation

Aggressive and lazy cancellation techniques have
been proposed to undo incorrect event propagation.
However, these are difficult to implement on massively
parallel SIMD machines for following two reasons.
First, there is not enough memory space for both
stale and oulput event queues. Second, additional
simulation cycle are required to send antimessages, i.
e. one simulation cycle for each antimessage.

To cope with the problems, we have proposed the
“immediate cancellation” technique which eliminates
use of antimessages and does nol require both state

and oulput queues. In this canceilation technique, a

o EVARTE N2Z(98 3

. m rollback immedwalely propagales a replace-

1t event Lo ils successors. Immediate cancellation is
o sariation of aggressive cancellation which sends
antimessages for all incorrect event propagation.
Since logic simulation has fixed event propagation
rouling and no preemplion, one replacement event is
cnough to nullify all incorrect evenl propagation.
With the immediate cancellation scheme., we can
achieve significant reduction in space and make both
queue manipulation and rollback management fast

and easy.

4.3.2 Circular Binary Search Queue

The FIFO queue structure which has been used for
both synchronous simulation and conservalive simu-
lation is not suitable for optimistic logic simulation
because timestamps of events along each input link
are not monotonic. Several existing queue structures
for oplimistic simulation have been suggested :a splay
tree based on a self adjusting binary treeia fiming
wheel using a pdority queue structure. In case of
rollback, however, all the events in the queue may
have 10 be searched to determine which 1o remove [4],

As an attempt to achieve fast queue manipulation,
we use an event queue scheme, called CBSQ (Circuit
Binary Search Queue). A CBSQ is a data structure
which allows a binary search on a circular list. A
CBSQ has two pointers, Front and Rear, to indicale
events in non-decreasing order of timestamp contained
in the queue. Front points 1o the element with the
smallest timestamped event, while Rear points to the
next available element in the quene. An algorithm for
finding a key a CBSQ Q with n elements numbered 0.

n-1 is described as follows:

[Algorithm CBSQ_search(key)]

if(Front (Rear) then perform binary search from
Front to (Rear-1)
else if (Front) Rear) then

if (key{Q(n-1)) then perform binary search

from Front to (n-2)

cse if (key)Q(n-1)) then perform binary
search from 0 to (Rear-1)

else Found

else the queue is empty

A CBS8Q) is assigned to each port of a process as an
event queue. In addition to the two pointers, another
pointer called SimPtr is used fo point to the unpro-
cessed event which has the smallest timestamp and is
ready to be evaluated for simulation. The CBSQ
structure can be used for event queues since immediate
cancellation. which does not need use of antimessages
and state queues, Is used.

The following basic operations can be done on
CBSQs with O(log n)

« find an event with timestamp t,

+ Insert an event into a gueue.

+ dclete all events with timestamps greater than t,

- delete all events with timestamps less than t, and

- find the next event after the event pointed to by
SimPtr.

5. Performance of Parallel Logic Simulation

In this paper, we present experimentation and per-
formance of the logic simulation protocols presented.
The logic simulation protocols were implemented on
the CM-2 with 32K processors. Some ISCAS'85 and
ISCAS™89 benchmark circuits are used as test circuits.
The performance of the protocols are measured for

000 randomly generated input vectors.

5.1 Performance Metrics
As performance metrics. we use the number of
simulation cycles, parallelism, maximum queue size,

and execution fimnes,

- Number of Simulation cycles

As defined previously, a simulation cycle is

synchronized for processors in SIMD. The execution
time is proportional to the number of simulation
cycles. That is, a large number of simulation cycles
means slow speed. Based on the relationship between
the number of simulation cycles and execution time,
we can tneasure the average time taken per simulation

cycle,

- Parallelism

The degree of parallelism (sometimes called activity
level [18]) is the ratio of active processors to assigned
processors at a given simulation cycle. An active gate
at a simulation cycle is defined as a gate which has at
least one event to be executed during the simulation
cycle. As the number of activé gates increases, the
concurrency becomes higher. An active processor is
defined as a processor which contains at least one
active gate.

Let H be the number of assigned processors. To
measure concurrency, we define degree of parallelism

and parallelistn as follows.

Definition 2 Degree of parallelism (D;) at simulation
cycle i is the ratio of the total number of active

processors to the total number of assigned processors.
That is,

Di=Ci/H9

where C; is the number of active processors at simu-
lation cycle i.

When a processor simulates ome gate only, the
number of active gates is equal to the number of

aclive processor.
Definition 3 Parallelism is the average ratio of the
total number of active processors to the total number

of assigned processors.

Parallelism can be computed as follows:

SMD ZREHOIM ZEXO WaKel =2 ASH0M 321

iss

2 D

1
Parallelism=—
S o

Where § is the number of simulation cycles.

- Maximum Queue Size

The maximum queue size is related to the memory
requirement and speed. If there is a queue overflow,
simulation cannot continue. In SIMD, the maximum
queue size over all processors should be estimated
and allocated in advance. In optimistic simulation
using CBSQ data structures, fossil collection[3] is
performed whenever there is at least one queue which
exceeds a certain limit. The frequency of fossil collec-

tion significantly affects performance.

- Execution Times

Some resulls in this paper are not ideal (or not gen-
eral) on massively parallel SIMD machines because
some constraints of evaluation advancement were
applied to limit queue size. In other words, if we had
used a massively paralle] SIMD machine with enough
local memory size, different performance would have
been obtained.

5.2 Performance Evaluation

Experimental results on the performance of the
considered simulation protocols have been obtained
for the benchmark circuits on the CM-2 with 32K
processors. Although simulation with multi-delay can
be dome, a unit-delay was assigned to each gate for
the consistency of experimental results. In the
measurements, Moving Simulation Bound (MSB) is
applied to both conservative simulgtion and optimis-
tic simulation technique to prevent queue overflow(8].

For performance evaluation 1,000 input vectors
were used. We gave 200 and 512 as timestamp intervals
between successive input vectors for ISCAS’85 and

ISCAS’89 benchmark circuits, respectively.

5.2.1 Number of Simulation Cycles

322 TRIENDITE =X F3H M 2%=(96.3)

(Table 2) shows the number of simulation cycles
for 1,000 randomly generated input vectors. The MSB
sizes to get the corresponding numbers of simulation
cycles are also given in the table. According to the
experimental results, synchronous simulation requires
the largest number of simulation cycles while optimistic
simulation needs the least. Synchronous simulation
activates only the slowest processes whose LVTs are
equal to GVT at each simulation cycle. Therefore, a
lot of simulation cycles are nceded because a rela-
tively small fraction of gates are involved in event
evaluation. On the other hand, optimistic simulation
advances the local clock of each process as far as
possible. If there is an event whose timestamp is equal
to or less than LVT of a gate, the gate is rollbacked
jmmediately without loss of any simulation cycles.
When rollback does not occur, the process gets as
much gain as possible. In conservative simulation,
event evaluation at a gate is done based on infor-

mation derived from its ancestors.

{Table 2 Number of simulation cycies

Synchronous | Conservative Optimistic
Circuits Cycles Cydes | MSB | Cycles | MSB
1355 58117 6686 © 6678 2000
C1908 68345 5675) 28000 5717 20000
C6288 11736 67658 2500| 67527 1500
C7552 83784| 13304| 10000| 13844 7500
59234 31886 21072 i 16310 w0
$13207 41886 30297 co| 33568 40000
515850 58874 | 22794 w0 1320 o
835932 26062 16044 0 1550 «©

In combinational circuits, synchronous simulation
has many more simulation cycles than the other two
techn.iques, while the numbers of simulation cycles for
conservative simulation and optimistic simulation are
close. On the other hand, optimistic simulation for

sequential circuit has fewer simulation cycles than the

other two lechniques. The reason is thal event propa-
gation is not frequently performed in sequential
circuits since flip-flops control event flow. Flip-Flops
execute received events according to the event sched-
uling policy of a technique, but they send messages
only at clock times. In this case, link clocks cannot be
properly updated in conservative simulation. For
example, consider a gale which has a D flip-flop as its
parent. In conservative simulation, the input link
clock of the gate from the flip-flop is not updated in
time because local clock computation must wait until
the flip-flop sends a message to the gate. In optimistic
simulation. the gate can execute event evaluation as
soon as possible and go ahead with virtual time
advancement.

(Fig. 2) shows the number of simulation cycles for
$9234 as a function of the number of input vectors.
According o our experimental results, in general,
optimistic simulation has the smallest number of
simulation cycles, while synchronous simulation has

the largest number of simulation cycles.

{simulation cvele)

30000 o. -
25000 + <. Synchronous |
w.*.. Conservative ©
20000 - ..0O. Optimistic _."J‘_#,.’. |

o7 T g
15000 e
o - o

10000

5000

1 1 1
400 600 800 1000
Number of input vectors

N

(Fig. 2) Number of simulation cycles for $9234

5.2.2 Parallelism
{Table 3) shows the parallelism for 1,000 randomly
generated input vectors. Optimistic simulation has the

highest parallelism since it includes unnecessarily

active gates which will be rolled back later. Synchron-
ous logic simulation has the lowest parallelism. The
reason is as follows. The time difference between suc-
cessive input vectors is larger than the critical path
length of the circuit being simulated. Since only the
gates with the smallest LVTs are involved in event
evaluation, any two successive vectors cannot be
overlapped. In other words, input veclors are
processed one by one. Therefore, parallelism is very
low.

{Table 3} Parallelism

.| Synchronous Conservative Optimistic

Clreuits Parallelism | Parallelims MSB | Paralielism | MSB
C1355 0.0230 0.1900 o 0.3240| 20000
C1908 0.0230 0.2791| 28000 0.3800| 20000
C6288 0.0860 0.1976| 2500 0.2600| 1500
C7552 0.0160 0.1053| 10000 0.1330 7500
§9234 0.0020 0.0033 @ 0.0240 w0
S13207 0.0018 0.0021 o 0.0068(40000
515850 0.0024 0.0027 0 0.0490 w0
§35932 0.0140 0.0230 w 02400)

Combinational circuits have higher parallelism than
sequential circuits since flip-flops in sequential circuit
control (or reduce) the flow of events. We can see, in
the table, that parallelism becomes low if MSB is
used.

-- 523 Queue Sizes

(Table 4) presents the required queu_e size of a gate

at the possible maximum MSB size for each test
circuit with different simulation techniques. The
measurement of the maximum queue size considers all
event queues during the entire simulation. The
smallest queue size is required in synchronous simu-
lation compared with the other two techniques since
parallelism is low and simulation is done for input
vectors one by one. On the.other hand, optimistic

simulation needs a large maximum queue size since

SIMD ZREALIOIM T8RO H21H2) =8| AIZE0IM 323

evenls must be stored in the gueue to copy wilh
rollback. In sequential circuits, however, conservative
simulation might need large queues than optirnistic
simulation since conservative simulation must wait io
execute events due 1o a race cvent(or message) propa-
gation.

In actual simulution, to avoid frequent fossil collec-
tion and improve performance, the following strategy
can be used: fossil collection is performed if the queue
size exceéds the limit. But the experimental results in
Table 3.5 were obtained by applying fossil collection
at each simulation cycle.

(Table 4y Maximum queue sizes (in events)

Synchronous | Conservative Optimistic
Circuits
Q Size Q Bize | MSB | Q Size | MSB

C1355 2 647 [=s) 346| 20000
C1908 2 6301 28000 4731 20000
6288 2 632 2500 419 1500
C7552 2 436| 10000 431 7500
59234 2 427 o0 337]
813207 2 284 L] 4341 40000
515850 2 386 o0 258 o
535932 2 21 @® 289 @

5.2.4 Execution times

(Table 5) compares the execution times of parallel
logic simulation techniques for different test circuits
with 1,000 randomly generated input vectors. In the
measurement, only the period for simulation is con-
sidered. The figures listed do mot include the time
required for translating circuit description, reading
vector, or printing output,

We observed that conservative simulations are
faster than synchronous and optimistic simulations
for combinational circuits even though optimistic
simulation requires fewer simulation cycle. One reason
is that, each cycle of optimistic simulation involves
more time-consuming operations, such as roliback

and long queue manipulation. This observation contrasts

324 st=EgKEiEE =2A M3 H 25(96.3)

{Table 5 Execution times(in seconds)

Synchronous | Conservative Optimistic

Creuits T Size | QSize | MSB | Q Size | MSB
C1355 214 55 w 189| 20000
C1908 265 41 28000 184] 20000
C6288 735 437| 2500| 1667] 1500
C7552 324 89| 10000 402 7500
£9234 119 100 o 443 a
§13207 154 142 @ 8141 40000
515850 227 111 w0 39 a0
§35932 100 81) 37 =

with the claims in [34, 48] that Time Wrap oulpe-
rforms the Chandy-Misra algorithms. But, as shown
in the experimental results, optimistic simulation may
be better than any other techniques for sequential
circuits. But, for circuit with fewer flip-flops, such as
§9234, Time Wrap might be slow because oplimistic
logic simulation has only slightly fewer simulation
cycles than conservative logic simulation. Even through
each simulation cycle of synchronous simulation is
very simple, it usually takes more time than the two
techpiques since it needs many more simulation
cycles.

Soule and Gupta [18] found that deadlock avoid-
ance with null messages on the Encore Multimax
(shared memory MIMD machine with 16 needs) is
highly inefficient. They claimed that actual run times
range from 30 times slower to more than 100 times
slower than conservative simulation with deadlock
detection and recovery. But conservative simulation
with deadlock detection and recovery is difficult to
implement on SIMD machine. As we can from the
table, conservative simulation with null messages

works very fast.

6. Conclusions

This paper studied logic simulation as one appli-

cation of distributed event-driven simulation on

massively parallel SIMD processing machines. Data
structures to implement several simulation techniques
efficiently in SIMD environments were discussed.
Some variations of distributed event-driven simu-
lation have been proposed to improve performance of
logic simulation.

We have experimentally analyzed the effect on
performance of logic simulation depending on several
factors, such as target machine used, simulation
techniques applied, event queue structures implemented,
and test circuit simulated.

‘We observed that, despite theoretical arguments to
the contrary, oplimistic simulation such as Time
Wrap is not the best technique for all applications on
massively parallel SIMD machines. This is attributed
to its inherent rollback and queue management over-
head. We also observed that, in contrast to MIMD
environments, conservative simulation with null mess-
age works very fast on massively parallel SIMD
machines. Finally, we conclude massively parallel
SIMD machines can be efficiently used for parallel
logic simulation if we utilize the limited local memory

efficiently.
References

{11 1] J. R. Agre. Simulations of time wrap
distributed simulations. In Proceedings of the
SCS Multiconference on Distributed Simulation,
pages 85-90, March 1980. R

[2] R. Baldwin, M. 1. Chung, and Y. Chung. Over-
lapping window algorithm for computing GVT in
Time Wrap. In Proceedings of the 11th Inter-
national Conference on Distributed Computing
Systems, pages 534-541. IEEE, May 1991.

[3] D. Ball and S. Hoyt. The adaptive Time Wrap
concurrency control algorithm. In Proceedings of
the SCS Multiconference on Distributed Simu-
lation, page 174-177, January 1990.

[4] J. Briner. Parallel Mixed-Level Simulation of
Digital Circuits Using Virtual Time. PhD thesis,

Duke University, 1990.

[5] R. E. Bryant. Data parallel switch-level simu-
lation. In Proceedings of the 1988 International
Conference on Computer Aided Design, pages
354-357, 1988.

[6] A. Chandak and J. C. Browne. Vectorization of
discrete-event simulation. In Proceedings of the
1983 International Conference on Parallel
Processing, pages 359-361, august 1983.

[71 M. J. Chung and Y. Chung. Data parallel simu-
lation using Time Wrap on the Connection
Machine. In Proceedings of the 26th Design
Automation Conference, pages 98-103. ACM/
IEEE, June 1989.

[8] M. J. Chung and Y. Chung. An experimental
analysis of simulation clock advancement in
parallel logic simulation on an SIMD machine.
In Advances in Parallel and Distributed Simu-
lation, volume 23, pages 125-132, January 1991.

[9] R. C. De Vres. Reducing null messages in
Migra’s distributed discrete event simulation model.
IEEE Transactions on Software Engineering, 16
(1):82-91, January 1990.

(10] R. M. Fujimoto. Lookahead in parallel discrete
event simulation. In Proceedings of 1988 Inter-
national Conference on Parallel Processing,
volume 3, pages 34-41, 1983.

{11] R. M. Fujimoto. Time Wrap on a shared memory
multiprocessor. In Proceedings of 1989 International
Conference on Parallel Processing, volume 3,
pages 242-249, 1989.

[12] J. B. Gilmer. An assessment of Time Wrap paral-
lel discrete event simulation algonthm perform-
ance. In Proceedings of the SCS Multiconference
on Distributed Simulation, pages 45-49, July
1988.

[13] Y. Lin, E. D. Lazowaska, and M. L. Bailey.
Comparing synchronization protocols for parallel
logic-level simulation. In Proceedings of the 1990
international Conference on Parallel Proceedings,
volume 3, pages 223-227, August 1990.

SIMD ZHFEIL0IA SEXQI BAKE| =2| S04 325

[14] B. D. Lubachevsky. Efficient distnbuted event-
dnven simulations of multiple-loop networks.
Communications of the ACM, 32(1):111-123,
January 1989.

(15] V. Madisetti, J. Walrand, and D. Messerschmitt.
WOLF: A rollback algorithm for optimistic dis-
tributed simulation systems. In Proceedings of the
1988 Winter Simulation Conference, December
1988.

[16] B. R. Preiss. Performance of discrete event simu-
lation on a multiprocessor using optimistic and
conservative synchronization. In Proceedings of
the 1990 International Conference on Parallel
Processing, pages 218-222, August 1990.

[17] D. A. Reed, A. D. Malony, and B. D. McCredie.
Parallel discrete event simulation using shared
memory. IEEE Transaction on Software Engin-
eering, 14(4):541-553, April 1988.

[18] L. Soule and A. Gupta. Characterization of par-
allelism and deadlocks in distributed digital logic
simulation. In Proceedings of the 26th Design
Automation Conference, pages 81-86. ACM/
1IEEE, June 1989.

[19] D. M. Webber and A. Sanggiovanni-Vincentelli.
Circuit Simulation on the Connection Machine.
In Proceedings of the 24th Design Automation
Conference, pages 108-113. ACM/IEEE, June
1987.

[20] M. Yu, S. Ghosh, and E. DeBenedictis. A
non-deadlocking conservative asynchronous dis-
tributed discrete event simulation algorithm. In
Proceedings of the SCS Multiconference on
Advances in Parallel and Distributed Simulation,
pages 39-43. ACM/IEEE/SCS, January 1991.

v pinEEXMEEE =ER

19803
1982+
19923

M3 M2%(96.3)

S]

Audsm EGEAD
KAIST Z(84D
o= ARFERRRT
E034D

19929~8x Addgn A=

21 e
gosh 2@

A Bob:CAD 2 VLSI, #3

A AFE F&=

