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A Simple Connection Pruning Algorithm and
its Application to Simulated Random Signal Classification

Yonggwan Won ' - Byungeui Min

ABSTRACT

A simple modification of the standard back-propagation algorithm fo eliminate redundant connections (weights
and biases) is described. It was motivated by speculations from the distribution of the magnitudes of the weights
and the biases, analysis of the classification boundary, and the nonlinearity of the sigmoid function. After initial
training, this algorithm eliminates all connections of which magnitude is below a threshold by setting them to zero.
The algorithm then conducts retraining in which all weights and biases are adjusted to ailow important ones to re-
cover. In studies with Boolean funclions, the algorithm reconstructed the theoretical minimum architecture and
eliminated the connections which are not necessary to solve the functions. For simulated random signal classifi-
cation problems, the algorithm produced the results which is consistent with the idea that easier problems require
simpler networks and yield lower misclassification rates. Furthermore, in comparison, our algorithm produced bet-

ter generalization than the standard algorithm by reducing overfitting and pattern memorization problems.
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1. INTRODUCTION

Among the factors that affect the generalization,
the architecture of the network is the most important
one because its relalionship to the number of training
examples and problem difficulty mainly affects the
generalization capability [1]. As a rule of thumb, the
smallest network that fits the data leads to good
generalization. Some previous researchers wsed learning
theory to estimate the appropriate size of a network
[2, 3, 4]. However, choosing an appropriate network
architecture is still not obvious. On the other hand,
targe initial networks converge faster and are less
probable 1o be trapped in local minima [1, 5} There-
fore, il 1s reasonable to train a large initial network
and prune the excess architecture without degrading
the performance.

Many of previous investigations have been con-
cerned with obtaining an optimal architecture by
trimming fat from = larger initial network. They are
categerized into two classesionme s ux}it level
oplimization [6, 7, 8, 9, 10, 11, 12, 13, 14], and the
other is connection level optimization [15, 16, 17, 18].
Connection pruning completely eliminates weights
and biases that are deemed to be redundant. In general,
previous approaches used two methods:sensitivity
estimation and penalty terms in the error function,
which bolh require extra computational complexity.
Extensive review of pruning algorithms is available
from [3].

This paper is composed of six sections. We describe
the motivation for developing the algorithm in Section
2.1t 15 followed by a section which describes a simple
repetitive two-step training algorithm that prunes
redundant connections for multi-layer feedforward
networks. In Section 4, we justify the algorithms by
showing that the algorithm constructed networks that
had the theoretical minimum architecture and reflected
the logical rules of XOR and Rule-and-Exception
problems. Results of simulated random signal classifi-

cation studies are described in Section 5. I1 includes a

sel simulations which verify that our pruning algor-
ithm helps better generalization. Finally, conclusions

and possible future works are described in Section 6.

2. MOTIVATIONS FOR THE ALGORITHM

To develop an algorithm for pruning the redundant
connections, we examined the weight distributions of
different architectures, effects of pruning connections
on the classification boundaries, and the nonlinearity

of the neural network units.

2.1. Magnitude Distribution of the Connections

The final weight set of a trained neural network is
totally dependent on the initial weights, training
conditions, and the initial architecture. We investigated
the effects of different architectures on the fihal
weight sets. Theoretically, the XOR network has a
minimum architecture that has a single hidden layer
with two unifs [1]. For the XOR problem, the number
of connections in small magnitude range increased as
the number of the hidden units increased, while those
in large magnitude range remained similar [19]. This
finding suggests that weights of small magnitude are
redundant.

2.2. Boundary Analysis and Pruning Effects

Multi-layer feed-forward networks draw the different
boundaries depending upon the number of the layers
and the number of the units in each layer (20]. The
shape of the boundaries is different depending upon
the weight and the bias values. In other words, the
solution for weight value defining a particular bound-
arv is not unique. Thus, a small tilt of the decision
boundary., which is equivalent to a small change of
the weight values, does not change the total perform-
ance of the trained network, and it may improve the
performance sometimes.

Functional analysis and effects of pruning on the
boundaries are well described in [19]. We show an

example which can provide a speculation. Figure 1



illustrates the scaller diagram for the patterns with
two features for two classes, which are separated by
the three solid boundary lines, each defined by a unit
with two weights and a bias. The two diagonal line
have two weighis which have similar magnitude, while
lhe near horizontal line, designated as “Line 17, has
one large magnitude weight and one small magnitude.
In this situation, pruning a small magnitude weight
converts the near horizontal line “Line 17 to the hori-
zontal line, designated as “Line 2”. Furthermore,
pruning a small magnitude bias converts “Line 37 to
another diagonal line passing through the origin,
designated as “Line 4”. However, new boundaries

produce no change in the separation of the classes.

Featurs 2(Y}

Feature 1(X) 1

(Figure 1) Scatter diagram for the pattern sets with two
features for two classes. Two classes can be
separated by three boundary lines

2.3. Characteristics of the Sigmoidal unit

Training a network to discriminate the classes
forces the output of the most unils in a trained network
to approach one of the extreme values of the non-linear
sigmoidal mapping function, i.e., 1 or 0. In this situ-
ation, a small change of the netinput can be ignored
in non-linear mapping to its output. The following
mathematical description reflects this approximation
on the netinput. The netinput to each unit can be

separated into two summations as
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where p indicales lhe pattern index, ¥ and O, arc the
weight vector for unit 7 and corresponding input vec-
tor, respectively. In this equation, Wjigman is a small
magnitude weight, Wjiymee is a large magnitude and
weight. The first term contributes relatively little to
the netinput, and the second term contributes most of
the netinput. Therefore, withoul any critical change

on the output, Equation | can be approximated by
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24. Discussion

The speculations described in the previous three
subsections allow us to simply prune the weights
which have small magnitude. However, the distortion
to the trained network generally increases the error,
and there may be some situations where the small
weights have important effects. In other words, the
small tilt of the boundary can be critical in some
classifications. Therefore, two questions should be
considered when designing the connection pruning
algorithm -how to compensate for the increased error
and how to recover the critical tilt of the boundary.

In back-propagation training, in general, the
magnitudes of the weights grow and the error
decreases as the number of training epoch increases
[19]. Also the weight change is bigger with bigger
errors. Based upon these properties of the learning
scheme, simply more training of the pruned network
is most likely to compensate for the increased error.
More training also can recover the critical tilt of the
boundary. When a boundary can not be tilted because
the small tilt is very critical, the small tilt of that
boundary causes very big increase of the error, and

this big error results in a big change on the weights



mr

384 SIZMIKL|EE =X HI3Z F 2FE(96.3)

during the next training step. Finally, the weights

which define the boundary grow fast and the boundary

will recover in the same shape as before, however,

wilh larger magnitude weights.

3. CONNECTION PRUNING ALGORITHM

This section describes the simple connection pruming
algorithm which was developed based on the motivations
and discussions in the previous section. The pruming
algorithm first trains the network using the standard
back-propagation learning scheme to adjust all weights
(initial back-propagation training). When this initial
training reaches either lhe specified error or number
of maximum training epochs, all weights and biases
with a magnitude below a specified threshold value
are set to zero (i.e., pruning). If this pruning does not
increase the error, the algorithm terminates; otherwise
il resumes training (i.., retraining) by again adjusting
all the connections, also using the back-propagation
learming scheme, until the network reaches either the
error obtained by the initial back-propagation training
or the specified number of epochs for each retraining
cycle, This two-step process, retraining and pruning,
continues until the error caused by pruning is less
than that obtained by the initially trained network or
until the total number of retraining epochs reaches its
predefined value. The following pseudo code summarizes

this pruning algorithm :

Initialize the Network.

DO update the weights by back-propagation
learning.

UNTIL the number of epoch reaches a specified
value OR the error become less than a
specified value.

Prune  the weights.

WHILE the tolal training epoch does mot reach a
specified number AND the error with
pruned network is larger than the error at

the end of the initial back-propagation

learning.

DO update the weights by back-
propagation learning.

UNTIL the specified number of retraining
epochs per retraining cycle is
reached OR the error becomes
less than or equal to the error at
the end of the initial back-propa-
gation learning.

Prune the weights.

ENDWHILE

4. Experiments with XOR and Rule-and-
Exception Networks.

This section presents some experimental results
obtained from learning Boolean functions:XOR and
Rule-and-Exception. These problems are good examples
to justify that our algorithm constructs networks that
have 2 minimum architecture and preserve the logical

rule of the functions.

4.1. XOR Networks

In the study of the XOR problem, we used a network
having a single hidden layer which is designated by 2:
n: 1, where n ranged from two to twenty. Under these
conditions, an efficient solution to the XOR problem
contains two hidden units with six weights and three
biases [1]. We trained each network with our pruning
algorithm. The threshold value for each pruning was
selected to be the closest integer value to the minth

largest magnitude value.

{Table 1> Complexity of XOR network.

No. of Hidden units| 3 4 6 g 10 15 20
Initial Network |9(4)|12(5)[18(7) [24(9)|30(11) | 45(16) |60(21)
Pruned Network {6(2)| &1) 1 9(1) | 7(1) { &(1) | H1) | 11(0)

Table ! shows the number of the weights and

biases in the initial networks (second row) and those



in the network trained with our pruning algorithm
(third row). For each network, the first number
represents the number of weights and the second
number in parentheses represents the number of
biases. These data indicate that the algorithm always
pruned the networks to one that contained eight to
eleven weights and biases, which compares favorably
1o the ideal value of nine. Furthermore, in most cases,
further analysis of the final networks {16] indicated
that this pruning algorithm can reconstruct the most

efficient two hidden unit network.

4.2. Rule-and-Exception Network

In this problem, the network learns the Boolean
function AB+ A’B’C’D’ [16]. The output unit should
be “on™ whenever both unil A and B are “on”, which
is called “Rule”, or when all the input units are *off T,
which is called “Exception”. With a two hidden unit
network shown in Figure 2, back-propagation learning
reaches a solution with one hidden unit (R) responding
to the “Rule” and the other (E) responding to the
“Exception”. Cleatly, the “Rule” is more important
to the solution than the “Exception” since the “Rule”
accounts for 15 out of 16 patterns. Therefore, the
trained network should show this aspect and helps
prune the network. In other words, since the unit R
accounts for all the patterns except the pattern 0000
and the unit E accounts for the pattern 0000, the con-

nection Wre and Wpe can be prumed without any

(Figure 2) Network for the Rule-and-Exception problem.
One hidden unit (R) responds to the “Rule”
and the other (E) responds to the “Ex-
ception”.

misclassification, and the training algorithm should
show this phenomenon.

With this Rule-and-Exception problem, we examined
whether pruning any weijght changed the classification
performance. In our experiments, the connections
WRC and WRD had the smallest strengths, as in
Karnin’s study [16], and pruning them did not change
the performance of the original network in classifying
all 16 patterns. However, pruning only WEC and
WED which are two least sensitive weights in
Karnin’s study caused the misclassification of the pat-
tern 0000. Pruning all the connections to the unit E
also caused the misclassification of the pattern 0000,
which is also the same result as Kamin's. In summary,
this result also justifies that our pruning method

eliminates the redundant conneclions.

5. SIMULATED RANDOM SIGNAL
CLASSIFICATION

This section presents the results from comparing
the generalization performance of the standard
back-propagation (unpruned) and this pruning algor-
ithm for the simulated random signal classification
problems. It also describes the pruning performance
of our algorithm.

5.1. RANDOM SIGNAL GENERATION PROCESS

The random signal generation process [21] produces
a set of class patterns using a mathematical model
which generates pulse patlerns with exponentially
damped oscillatory edges. This model has five
parameters:amplitude, starting time, pulse width,
exponential coefficient and frequency of oscillations,
For each pattern, the process selected the values for
those parameters from a Gaussian distribution with a
specified mean and variance. In addition, the Process
perturbed each pattern with random values specified
by signal-to-noise ratio to simulate measurement
noise. All processes are assumed to be stationary and
randomness is defined by Gaussian distribution.

In multiple-class problems, separated processes rep-
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reseni each class, and al least one of the parameters
has 1o have a different distribution for each class. On
the other hand, the classes are distinguished by the
mean veetors of the parameters which have random
values. The problem difficulty is determined by the
statistical difference between processes, which is
described by the Mahalanobis distance (R) between
the parameter distributions. We assumed that random
variables are independent and variances are identical

for each distribution.

5.2. SIGNAL CLASSIFICATION AND PRUNING
PERFORMANCE

Wide variety of experimental results for this ran-
dom signal classification problem are described 1n [19,
21]. In this study, we considered two class problems
with the exponential coefficient as distinguishing par-
ameter which defined the most difficult problems [21].
Therefore, the processes used different mean values
for the exponential coefficient parameter. Pattern
vectors had 32 dimensions. We used networks which
had a single hidden layer with 4 units. This network
was found the minimum architecture [21]. For
ferminating the initial training, we used a root-
mean-squared-error of 0.022 and a maximum number
of epochs of 20,000;the maximum number of epochs
during each retraining cycle was 3,000;and the total
number of retraining epochs was 10,000. Learning
rate was 0.01 and the momenturn was 0.9. A set of
100 patterns from each class was used for training,
and an independent set of 100 patterns was used for
testing. For each experiment, we calculated the error
rates with the test set at the ends of the initia! train-
ing and the pruning algorithm.

Figure 3(a) shows the error rales for the unpruned
and the pruned networks versus distance with threshold
of 0.3, 0.5, and 0.7 and (b) represents the correspond-
ing pruning rates. As distance R increased, i.e., the
classes become more distinet and classification is less

difficult, the error rate decreased while the pruning
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(Figure 3) (a) Error rate and (b) pruning rate versus the
problem difficulty (R) with various threshold
values for pruning. (c) Error rate ratio of
pruned netwerks to unpruned networks.

rate increased. This result indicates that our algorithm
is consistent with the general idea that an easier problem
produces a lower error and requires a simpler network.

Figure 3(c), which presents Figure 3(a) and (b) in a
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different way, shows the ratio of the error rate for
our pruning algorithm to that for the standard algor-
ithm as a function of pruning rate. This figure shows
that our pruning algorithm demonstrated better
classification performance as indicated by the ratios
below 1.0. In summary, the minimal network can
have some superfluous connections and elimination of
those connections improves generalization. These data
emphasize the importance of pruning the redundant

connections.
6. CONCLUSION

We have described a simple training procedure that
can eliminale superfluous connections. It was devel-
oped based on the distribution of the magnitudes of
the weightls and the biases. analysis of the classifi-
cation boundaries, zand the nonlinearity of the sig-
moid function. It is a repetitive two-step training
algorithm that trains the network by adjusting all
weights and biases and then prunes (ie., set to zero)
the weights and biases with magnitudes less than a
threshold. This algorithm is important because we can
avoid the need for selecting the most efficient archi-
tecture before training begins. Instead, we can use
oversized network intentionally in order to reduce the
training time and the likelihood of a Jocal minimum
trap [1], and then conmection pruning can be used to
reduce the network complexity.

The behavior of this algorithm was justified with
two Boolean functions:XOQR and Rule-and-Excep-
tion. Qur simple algorithm reduced the various initial
architecture for XOR problem to the one which
compared favorably to the theoretical minimum net-
work. It also eliminated the connections which are
not necessary to solve the Rule-and-Exception func-
tion. In pattern recognition study, we applied our
algorithm 1o simulated random signal classification
problems. Random pulse signal patterns with damped
oscillatory edges were used. Our algorithm produced

the results which are consistent with the idea that

ot
[
n
1

o
Kl
]
HITH]
=t
HI
o
r
Al
[
fal
HI
I
=
9
00
0
(&%)
o
~

easier problems require simpler networks and yield
lower misclassification rates. Furthermore, in com-
parison with the unpruned network. our algorithm
produced better classification performance than the
standard algorithm, We believe that our algorithm
can reduce overfitting and pattern memorization
problems by eliminating superfluous network parameters.

During our experimental study, we have observer
that some inpul and hidden units can be completely
deleted. This fact indicates that our algorithm can be
utilized for wunit level minimization and feature
reduction.

Since our algorithm uses a repetitive two-step process,
pruning and retraining, entire training time is generally
longer than the standard training algorithm. To over-
come this problem, we should concern a method for
fast convergence [22, 23]. We also need further
research to develop a systematic method to select the

threshold value,
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