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Efficient Construction and Training of
Multilayer Perceptrons by Incremental Pattern Selection

Byoung-Tak Zhang f

ABSTRACT

An incremental learning algorithm is presented that constructs a multilayer perceptron whose size is optimal
for solving a given problem. Unlike conventional algorittims in which a fixed size training sct is processed repeat-
edly, the method uses an increasing number of critical examples to find a necessary and sufficient number of hid-
den umits for learning the enlire data. Experimental results in hand-writtern digit recognition shows that the net-
work size optimization combined with incremental pattern selection generalizes significantly better and converges

1

i3

faster than conventional methods.

1. Introduction

Any continuous multivariate function on a bound
domain can be approximated by a multilayer feedfo-
rward neural network with a hidden layer of sigmoid
units to any desired degree of accuracy [11, 13]. How-
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ever, this existence theorem does not provide any hint
on how many hidden units are necessary for solving a
particular problem. The method of error back-propa-
gation [20], one of the standard techniques for training
multilayer perceptrons, is limited to optimizing weights
only and suffers from slow convergence.

The training speed and generalization performance
of back-propagation networks are affected to large
extent by the network architecture or size [1, 9, 22]. If

the network contains too small a number of hidden
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unils, the training will never converge. On the other
hand, if the nework is too large, the generalization
performance of the trained network will be generally
poor. Some theoretical works give bounds on net-
work size for learning a class of problems [6]. How-
cver, most of these studies are worst case analysis
based on one or more unrealistic assumptions, and
not very helpful in practice.

Recently, several learning algorithms have been
proposed to construct optimal feedforward networks
for specific applications [21]. All constructive methods
begin with a small network and introduce new hidden
units and/or connections on demand. Some of them
Iry to find a compact distributed representation,
where the optimization is done with respect to the
number of units in the hidden layer [4, 12]. Others
construct more or less localized representations by
building a deep or flat-but-wide network [8, 19]. Both
approaches have their own strengths and weaknesses.
Each of these methods uses all the given data for net-
work construction and training,

In this paper we present a constructive learning
algorithm that uses 2 small subset of given examples
to construct a feedforward network with an optimal
number of hidden units. The solution obtained has
the feature of local approximation [22], similar in
spirit to that of radial hasis function networks [18]
and k-nearest neighbor classifiers [10], without giving
up the beneficial global approximation ability of the
multilayer networks of sigmoid umits. Furthermore
the algorithm does not need a second data set for
testing the generalization performance of the networks
to decide the stopping of the training, because the
generalization accuracy of the network increases
almost monotonically once an optimally sized archi-
tecture is found.

The method is based on the observation that not
all available examples are critical to realize the
desired mapping. In classification tasks, for instance,
the critical examples are those that lie closest to the
separating hyperplances [23]. Previous studies have

shown that a network irained only on these “border”
patterns generalizes substantially better than one
trained on the same number of random patierns {2, 14).

This observation was used in [28] to devise an
incremental learning procedure that starts with a
small set of seed examples and expands the training
set selectively after training, In the previsous work
(24, 25] we have shown that this selective learning,
called SEL can find a minimal training set that is suf-
ficient for learning the entire data. We have also
shown that the SEL learning algorithm achieves bet-
ter convergence and generalizalion performance than
non-incremental learning with the original data, pro-
vided the data set is large enough to have all the bor-
der patterns.

The current algorithm is an extension of the selec-
tive incremental learning that also optimizes the net-
work size during training.

After a brief discussion of our constructive
approach in Section 2, the algorithm is described in
Section 3. The performance of the algorithm is studied
In Section 4 in the context of digit rwogniﬁon. Section

5 discusses the implications of this work.
2. Learning in Layered Networks

Multilayer feedforward neural networks, or multilayer
perceptrons are networks of unifs organized in layers.
The external 1nputs are presented in the input layer
which is fed forward via one or more layers of hiden
umits to the output layer. There 15 no direct connec-
tion between units in the same layer. The activation
value of unit 7 is influenced by the activations a; of
incoming units 7 and the real-valued weights z;; from

7th to ith unit. The net input of unit 7 is computed by

net; = Z Wy & + G,‘, (1)
FERM

where R(7) is the receptive field of unit 7, The bias 6;

is usually considered as a weight w;, connected to an

extra unit whose activation value is always 1. The



ontput value of unit 7 is determined by a nonlinear
transfer function f. A commonly used output func-
tion 1s the sigmoid nonlinearity

finet)= ()]

1
1+ e
For the case of a two layer perceptron (see Fig. 1),
the ith output of network, f;, i=1,:-,0, is a
nonlinear function of inputs x;:

fz‘(x;w)=fi(éwij f; (k)izowjkxk )) 3

where I, H and O are the number of input, hidden,
and output umits, respectively. Each network con-
figuration w implements a mapping from an input x
X R to an y €Y C R°. We denote this mapping
by y=f(x;w), F:R'X W—=R°.

(Fig- 1) A fully connected feedforward network consisting
of [ input, 0 ocutput and H hidden units. For sim-
plicity, bias weights are not shown.

The set of all possible weight vectors w constitutes
the configuration space W C RY, where 4 is the total
number of weights of the network architecture.

The networks are used to learn an unknown
relation F. A set of N input-output pairs is given as a

fraining set:
Dy={(x,, yc)}év=l @

where x, €XC R, and y. €Y C R?. The relation F

o
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can be generally described by the probability density
function defined over the space of input-output pairs
XXYCR'WO:
Pr(x, y)= Pr(x)Pr(y | x) )
where Pr(x) defines the region of interest in the input
space and Pp(y | x) describes the functional or statisti-
cal relation between the inputs and the outputs.

Learning the training set by a network is formulated
as an optimization problem. One defines a quality
measure of the approximation of the desired relation
F by the mapping f(x:w) realized by the network.

A commonly used measusre is the additive error
functional

N
EDyiw)=2 ey | x., w) 6)
cx]

where e(y. | x,, w) is the squared error between the

desired output y. and the actual output
0 ) .
ey | x, wy=% (yci—f,-(x.,-; W)) Q)]
=]

where ¥,; denotes the 7th component of vector y..
Usually the problem is formulated as finding a set
of parameters w that minimizes the total error on the

training set Dy of N independent examples:
w* =arg ming ey E(Dy | w) (8

Much research has been done to increase the speed of
this optimization problme (see [5] for a recent review
of various methods).

Note, however, that the eventual goal of learning is
generalization on unseen data;that is, the perform-
ance of a metwork should be measured on the whole

input space by generalization error, defined as
E(w)= J’ ey | x, wdp(x, y) ©)

where the joint probability distribution p(x, y)=p( |
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x)#Xx) is unknown and the only avaiable information
1s conlained in the training set. The minimization of
the training error does not necessarily imply optimal
generalization. In general, the network size should
also be optimized fo be sufficiently large to realize the
target mapping and, at the same time, small enough
to avoid overfitting to the training examples [9, 221
Usually one uses a second data set €, C N Dy=4¢, for
the evaluafion of generalization performance. The
new problem is formulated as finding an architecture

and its weights that minimize the error on Dy:
w*, A*=arg min,  E(Dy|w, 4) (10

where the fest set C is used to determine the termin-

ation of the optimization process.

3. The Algorithm

The learning proceeds as follows. We choose a
small initial training set from a given data. The rest
of the data is called candidates. The network is
initialized with a small number of hidden units. One
hidden unit and two seed examples are typical choice
in the experiments. The network is trained on the
training set by the back-propagation algorithm or
possibly by any ther weight modification rule. If the
training converges, we expand the training set by
selecting A candidate examples. Otherwise, we expand
the network by introducing v hidden umits and
reinitializing the connection weights. Training of
weights, selection of examples, and introduction of
hidden units with retraining is repeated until an
acceptable generalization is achieved on the candidate
data set.

A more detailed description follows. The algorithm
is called SElective Learning with Flexible neural
architectures, or simply SELF. A theoretical discussion
of the algorithm can be found in [27].

Given a data set B, the training set D is initialized

to contain a small number of seed examples chosen

from B. The rest of B is used as a candidate set C.
During learning, D is increased by selecting examples
form C We use a superscript s, as in D%, to denote
the sth training set. The mnetwork architecture is
initially small and grows duning learning. The symbol
A® is used to denote the architecture of a network
after the gth growing step.

The weights of the network are initialized randomly
with values from the interval —w < w;; < + . The
initial network AY’ is trained with the training set D9).
The trained network is used to expand the training
set for the next generation, ie. D?), which are again
used to find and train the network A%, where 4@ is
of the size same or larger than 4. In this way, the
trained network A% and the training set 4% at time s
cooperate with each other, where the indices g and s
do not necessarily correspond. For each 5, the following

conditions are always satisfied

DEYUCcH=p
D(s)ﬂc(s)=¢ (11)
D®— pG&+D

and each network growing step satisfies the condition
A8~ 4+ 12

In the training phase, the connection weights of the
network are updated using the examples in the train-

ing set. If we denote by w® & ? the weight vector of
the network 4@ for the £-th sweep through the train-

ing set D, the weights are modified by
WS EITD = e ) . gyl et 13)

AW(S..E. 1)= —EV Eslmuwu:.n)

+ fw & 1D (14

where E, is the total sum of the errors for D®

E.=E(D () | w(i. &, t), A(g) )



W, (13)
_ ’El(ym_ Flrwsad, @)
and the error gradient V Egl,—yuu . is approximated
by a back-propagation procedure [20]. In equation
(14), € and #; are the step size and the momentum
factor, respectively.

At every Al epochs we check the convergence of
the error minimization. If the total error for the cur-
rent training set is reduced to a specified error toler-

ance level,
E(DO | ws a0 &) <6, (16)

the training process terminates and the training set is

expanded. We define the error tolerance value as
ag=%{(1+1) - He+(Hg+1) - O} an

where I, O and H, are the number of mput, output
and hidden units of network 4%. The constant tau t
determines the error sensitivity per connection.

In the selection phase, the generalization accuracy
of the current network is tested on the original data,
B=D®UC®:

G=t L 0, flawSet ) (8
N . pes

where the function @(-,-) is some measure of

correctness. For classification problems, such as digit

recognition, it is an indicator function:

G) (Ym f(xq; w e f), A(g)))

1 if 3= Filxws 89, 49) for Vi
- { (19)

0 otherwise

If G, exceeds the desired performance level €, say
99%. then the entire algorithm stops. If C® is empty,
the alorithm also stops. Notice that halting with a

nonempty C® means the network has generalized
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correctly to the candidate data set. Otherwise, the
criticality with respect to the current model w is
computed.

The criticality (x,, y.) of an example is defined as

e (o F G aD 4E))2
ew(x.:)_ dim(y c) (.Vm f (xm=w( £ )v A )) (20)

which has a value 0 < g,(x) < 1 if the sigmoid acti-
vation function is used at the output layer. Then the
training set is increased by selecting A candidate

examples, (x, y.), which are most critical :

pDE+Y = p& |y {(xc’ _V,,-)}

Clo+D=CO—{(x,, ) @

In case of |C®[ (A, all the remaining candidate
examples are selected into D&+ Using the expanded
training set, the next cycle of training and selection is
done.

If Eq. (16) is not satisfied, then check if the model
trapped in a local minimum. For the detection of
local minima, a time window is used to consider the

change in errors during the last 4/ epochs

AED=E(D® | wise -4 4@)
(22)
—E(D(s) Iw(S.g. !)’ A(g))

For a robust detection we extend the time window to
the entire training time fromfthe start by having a

temporally discounted influence ‘of earlier error changes

AESO@)=AE® +% AESD(t— A1) @3)

This quantity is normalized to an average error

AES 8 () for a training example in each epoch:

N.-O (e]:)]

AESP()=
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Then' the network grows if the total error is larger
than the error tolerance g, defined in (16) and the
average error change is smaller than the specified
threshold p, i.e.

[E(D(s) | wis & t)’ A(g)) Y Eg]
(25)
AN 4ESE®<p ]

Network growing is performed by introducing
new units to the hidden layer:

FEHD = @ U H 4 1,...H, + u} (26)
Hypy=Hg+u.

where %€ denotes the index set of hidden units in 4@,
The new hidden units have full connectivity with all
input and outpul units.

The values of new connections can be initialized in
several ways.

Two strategies are studied in the simulations. The
first one is to reinitialize all the weights, including the
existing ones.

An alternative approach is to keep the trained
weights unchanged and to initialize new connections
with values proportional to the average of the weights
in the existing connections of the same weight layer.
The first strategy grarantess an escape from a local
minimum and hence leads to a minimal network size.
We will use this strategy for classification problems
where the input and output space are discrete.

The latter strategy will ensure an effective escape
from the local minimum without loss of information
learned up to the growing point. This is used for con-

tinuous-valued problems.
4. Hand-Written Digit Recognition

The performance of the SELF algorithm in its
learning speed and generalization accuracy is studied
in the context of hand-written digit recognition.

We collected 6800 digit patterns written by 10

persons. Each pattern consists of 15X 10 bitmap.
Some of the bitmap patterns are shown in Fig. 2. One
half of the examples were used for training the net-
work and the other half for testing the generalization

performance of the trained network.

GBS EFH
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e B ]
Ciigiiralsy ] lca
HWAIAENMEF P

(Fig. 2) Some digit pattemns for training and testing.
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We used networksize increment =35 and training
set size increment A= 50. i.e. the algorithm SELF(5, 30).
The initial network contained five hidden unils and
the weights were initialized with random valyes from
the interval [—-0.1, +0.1]. 10 digits of .0 to 9 were
randomly chosen from the data set to initialize the
training set. In each adaptation phase the network
was trained for each training set until the total sum of

errors for the training set dropped below sg=—51-0— K,

where K, is the total number of adjustable weights in

i
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L] e ] e e e e
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s | T T L DL P SELF(5,50)
-é —————— SELF(5.100}
3
[ =

0 300 600 900 1200 1500 1600 2100 2400 2700 3000 3300
training set size (N)

{Fig 3) Network size growth as a function of training set

size. Optimization of network size is relatively

robust against the parametersu and A
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(Fig. 4) Leaming and generalization performance for the
SELF(5, 50) algorithm. The training set size for
which the accuracy is almost zero indicates the
time when network growing takes place. Optimal
size network is constructed using about 1000
examples out of 3400.
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(Fig. 5) Leaming and generalization performance of
SELF (5, S50RANDOM) algorithm in which examples
are chosen randomly. Until an optimal network
size is found, this algorithm uses about 3000
examples. This training set size is approximately
three times larger than that of SELF(5, 50)

the network of gth growing stage.

The learning trial converged to a network with 30
hidden units, i.c. 150-30-10 architecture, - achieving
approximately 85% generalization. The evolution of
network size and performance are_shown in Figs. 3
and 4 as a function of the training set size. The per-

formance was measusred at each initial and final

al

= =

training epoch for each training set.

In Fig. 4, the points where the accuracy goes to
almost zero indicates the netwrok growth step. This is
because we reinitialized the entire weights at each
growing step fo ensure the minimum network size.
Notice that after reaching the optimal size network

there is no significant improvement in the generalization

petformance. This indicates the method has already
found a critical subset of the given data.

The effectiveness the algorithm was lested by
performing control experiments. We varied the par-
ameter values z# and A, resulting in two variations.
SELF(2, 50) and SELF(5, 100) of SELF(5, 50). The
results are shown in Fig. 3, where the network size is
depicted as a function of the training sel size. i

The algorithm SELF(2, 50) converged to a network
structure with 28 hidden units, two less than the other
variants. This suggests using a small # parameter
allows a finer-grained optimization of network size
than a large . However, SELF(2, 50) was the slowest
of the three algorithms in terms of training time.
Algorithm SELF(5, 100) was slightly faster than
SELF(5, 50), but the difference was smaller than that
between SELF(5, 50) and SELF(2, 50). There was no
significant difference in the final generalization per-
formance.

The SELF(5, 50) algorithm was compared with two
non-constructive algorithms:the plain back-propa-
gation (BP) and SEL. The algorithm SEL is the same
as SELF, except that SEL uses a fixed number of hidden
units [25). We use SEL(H, 1) to denote a selective
learning with A hidden units and A examples chosen
in each selection step. A 150-30-10 architecture was
used for BP and SEL.

As can be expected, SELF was the most expensive
algorithm of the three due to the additional costs for
network size optimization. However, SELF converges
faster and more robust than BP and SEL once it
finds an optimal network size. On the other hand,
SELF is the most robust algorithm of the three.
SELF was always able to converge, while SEL did
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not always converge and BP usually did not. Among
the non-constructive algorithms, the selective incremental
leaining SEL was generally superior to BP both in
convergence and generalization performance.

The effect of example selection during network
growing was studied by selecting examples randomly,
instead of using the criticality measusre (Eqn. 20).
Comparing Figs. 4 and 5 we see that network size
optimization combined with active example selection
generalizes better and converges much faster than

with random selection.
5. Conclusion

We have shown that an optimal size of multilayer
perceptron can be constructed efficiently by selecting
examples intelligently, instead of randomly or without
any selection. One of the most useful characteristics
of the SELF alogorithm is that there is no need for
the user to decide in advance on the exact complexities
of the network and the training set. The incremental
data selection method allows the user to use all the
available data without having to worry about the size
of the data. Indeed, the supenority of this algorithm
to other methods becomes clearer as available data
becomes more abundant.

Simulation resnlts show that for a small data set,
the selective construction algorithm maximizes the
generalization performance by finding a minimal net-
work stze for learning the data. For a large redundant
data set, the method converges faster than the
back-propagation network with an optimal number of
hidden units, without sacrificing the final generalization
accuracy. The enhancement of learning speed is pro-
portional to the rate of data reduction. In general, the
larger the given data set, the better the relative per-
formance of the SELF algorithm compared with the
plain back-propagation or other constructive algorithms.

The final number of hidden units is a function of
the network growth parameter 2 which affects the

total learning time. Using a small 2 leads to a

fine-grained network size with high optimization
costs, while a large » finds a rough size fast. Thus the
balance between granularity and costs of optimization
can be done by varying x. We observe, however, no
significant difference in the final generalization per-
formance unless the difference of x values are big. It
can be recommended to try first with a large # to find
a rough size and then perform a second run to find a
smaliler size, provided one-shot optimization is not
compelling.

This is however different from the usual tral-and-
error methods, where one trial does not give much
insight into the minimal network size for learning the
given examples. In contrast, after the first run of the
SELF algorithm one can be statistically sure that the
minimum lies within the interval [H —u-+1, H],
where H, is the number of hidden units for the final
growing step in the run.

Another advantage of the SELF learning algorithm
is that it helps to decide how good the given data is.
If the generalization performance of the trained network
is poor, one can conclude that the data is lacking in
critical information since the algorithm used an optimal
network for the given data set.
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