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A Fuzzy Morphological Neural Network :
Principles and Implementation

Yonggwan Won' - Bae-Ho Lee '

ABSTRACT

The main goal of this paper is to introduce a novel definition for fuzzy mathematical morphology and a
neural network implementafion. The generalized-mean operator plays the key role for the definition. Such defi-
nition is well snited for neural network implementation. The first stage of the shared-weight neural network has
adequate architecture to perform morphological operation. The shared-weight network performs classification
based on the features extracted with the fuzzy morphological operation defined in this paper. Therefore, the
parameters for the fuzzy definition can be optimized using neural network learning paradigm. Leaming rules for
the struciuring clements, degree of membership, and weighting factors are precisely described. In application to
handwritten disit recognition problem, the fuzzy morphological shared-weight neural network produced the
results which are comparable to the state-of-art for this problem.
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1. INTRODUCTION rious image processing tasks and pattern recognition

as a feature extraction methodology. Originally, the

Mathematical morphology has been employed in va- theoretical foundations of mathematical morphology

were developed for binary images which can be repre-
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sented as sets [1, 2]. Binary morphology has been ex-
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:g ggigﬁ ;'{i%l% ;,rr:';] J}ﬂj}"]-‘r 4 tended to gray-scale morphology using umbra techni-

A 401995 114 209, HApgE 1996 59 159 ques [2, 3, 4, 5, 6, 7] and the lattices theory [8, 9].
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The morphological operations are non-linear, trans-
lation invariant transformations that involve probing
a signal or image with compact sets, called strucruring
elements. Therefore, information obtained by filtering
is highly dependent upon structuring elements, as em-
phasized by Matheron [1], indicating that the selec-
tion of structuring elements is very important. Un-
fortunately, systematic design of structuring elements
is difficult [10, 11, 12]. Therefore, there is a need to
develop a unified methodology for generating optimal
or near-optimal structuring elements for feature ex-
traction.

Fuzzy set theory [13] has been successfully used to
describe phenomena and systems with imprecise ling-
uistic terms (i.e., tall, very tall) used in everyday. A
system can be either crisp or fuzzy, depending on how
the membership for an item is determined. While
crisp (Boolean) systems allow the membership to be
either one or zero, fuzzy systems allow for the degree
of membership being a number in the range of [0, 1].
In general, the performance of fuzzy versions is su-
perior to that of the corresponding crisp version for
objective function based algorithms which iteratively
minimize a criterion function until a global or local
minimum is reached [41]. Furthermore, fuzzy algori-
thms are less probable to be trapped m local minima
[14]. However, it has long been a problem to detem-
ine the degree of membership systematically.

Multilayer neural networks have been widely used
to solve many problems with the development of the
effective error back-propagation learning rule [4, 15,
16]. This learning rule based on an iferative gradient
descent method that updates the parameters (i.e., wel-
ghts and biases) from initial guess to minimize the er-
ror. Shared-weight neural network [17] is a special
class of multilayer neural networks. It is a hetero-
geneous system that performs classification based on
the high-order features combined from locally extr-
acted. This tightly coupled approach can produce a
better feature set for classification than other approa-
ches which use the isolated feature extraction process.

Defining a fuzzy morphelogy is an on-going re-
search. Dougherty [18] has defined a definition, but
his definition did not raflect amount of difference be-
tween the input signal and the structuring clement.
Furthermore, the problem of optimizing the parame-
ters is still remaining,

Main purpose of this research was to employ the
neural network learning pradigm to overcome the
drawbacks of the mathematical morphology and the
fuzzy logic described previously. In this paper, we in-
troduce a new definition of fuzzy mathematical mor-
phology and learning rules for implementation of a
necural network system. In Section II, we define a
fuzzy morphological operations using generalized-
mean operator [19, 20). A shared-weight neural net-
work that performs fuzzy morphological oi)eralion
for feature extraction is described in Section III. In
Section 1V, we present some experimental results
obtained from handwritten digit recognition problem.
Finally, in Section V, conclusions and further works

are discussed.
2. DEFINITIONS

In this section, we first briefly describe the standard
definitions of two essential operations;gray-scale
erosion and dilation. We then introduce generalized-
mean operator which plays key roles in defining our
novel fuzzy morphological erosion and dilation. Com-
plete mathematical description for obtaining fuzzy

erosion and dilation is also provided.

2.1 Gray-scale Erosion and Dilation

Erosion and dilation are fundamental operations
for mathematical morphology. The theoretical found-
ations of mathematical morphology lie in ser theory
which is well-suited for binary images [1, 2]. An ex-
tension of binary operations to gray-scale operations
can be achieved by two different ways:umbra trans-
fomr [2, 3, 5, 6, 7, 8] and lattice theory [8, 9]. We
briefly describe the definition of those operations. De-



tails of theory, other operations, properties and appl-
ications are widely available from the morphology lit-
erature [1, 2, 4, 6, 7, 8, 21, 22].

The erosion of a function f by a structuring el-

ement g is defined by

o) =max{y:g.+y<f}. (1)

(Fig. 1) An examples of gray-scale erosion.

= ¥*
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(Fig. 2) An example of gray-scale dilation.

The erosion at a point x can be done by two steps: 1)
move the structuring element spatially so that its ori-
gin (origin of Buclidean space) is located at x, and 2)
find the maximum amount we can offset (push-up)
the structuring element while it is beneath the signal.
Obviously, D[gx]EDI[f] in order to satisfy “be-

neath” condition, where D indicates the domain. An
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exanmiples of gray-scale erosion is shown in Fig. 1.

Instead of finding maximum “offset” at a point x,
we can find the “minimum difference” between f(z)s
and g.(z)’s for all z& D[ g,]). This notion leads to the
formulation of erosion

(f © @) =max{ f(z) — g(z):z€ D[ g.1}. 2

Note that (f® 2)(x) is only defined at any point
where gx € f.

Gray-scale dijation can be defined in a dual manner
to gray-scale erosion, Before giving the definitions, we
motivate the duality principle by showing how di—
lation can be viewed as an erosion. Instead of trans-
lating the structuring element and finding the maxi-
mum offset while keeping the structuring element be-
neath the signal, we can (i) take the “reflection™ of
the structuring element g, (ii) move the reflected str-
ucturing element g* to a point x, and (iii) find the
“minimum” offset for the reflected-translated struct-
uring element (g*)x to be “above” the signal. We
should note that the signal is restricted to the domain
of the reflected-translated structuring element (g%),.
Figure 2 illustrates an example of gray-scale dilation
which is formalized mathematically by

(f P g)x)=min{y:(g*)x+y¥» f}. ®

Instead of finding the minimum “offset™ at a point
x, as we did for gray-scale erosion, we can find the
“maximum difference” between f(z)’s and (g%)(@)'s
for all z€ D[(g*)«]. This notion leads to the formu-
lation of dilation

(f @ g)x)=min{f(z) —(g*x(2):2€Dl(g*K]}. @

2.2 Fuzzy Erosion and Dilation
The generalized mean operator is defined [19, 20] as

1/p

£(x;p, w;)=[ X wixf (5)
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where

Z_', wi=1, wi>0,0<x =1, and p70. 6)
This operator has several attractive properties. For ex-
ample, the mean value monotonically increases with
respect to p when the wy's are fixed [20]. Thus, by
varying p from — to +0, we can obtain all values
between min{x} and max{x;}. This property was
used to simulate linguistic concepts such as “at least”
and “at most” by choosing appropriate values for the
parameter p [23, 24, 25]. The w;'s can be thought of
as the relative importance factors for the different in-
formation criteria x’s. This property was also used for
redundancy detection for a hierarchical fuzzy infor-
mation fusion system [24, 25, 26].

The assumptions in (6) can be kept as hard con-
straints. However, we use soft assumptions in our de-
finitions in order to implement a neural network sys-
tem later on. The following theorem provides the mo-

tivation.

Theorem :Suppose we have a finite set{x;;i=1, 2, -+,
N}. X w; > 0 and x; = 0 for all i, then

lim gla;p, w)=min{x;}and lm glx;p, w)=max{x}:

pemm p=+a

Proof : For any k,

1/p
=Xx

gxisp, Wi)=[ 2 wix}

fefaf o]
=x[f()]'?

where

f(p)"" Z W.( X ) +W|g.

Let x¢ be min{x;}. Then,

- \P
lim (—"L)=ﬁm ("“)-o becauseOS( )<1.
p++w Xi

p—+—o | Xk Xi

Thus,

lim f(p)=w.

p+—m

Note that

I 1
fm P lwe
pe— P pete P

Therefore,

fa—— =+

tim [fp)]P= Iim exp{ln[(")]} xp(0) =

and lim g(u;p, wd=xe=min{x)}.

p—~—o

Let xx be max{x;}. Then,

p— Xy

-\ P -
lim (i) =0, because 0 < (i)< 1.
Xk

In the same manner, we can show that lim g(x;;p, W)
p—‘ o

=Xy =max{x}.
QE.D.

From this theorem, we can formalize the erosion
and dilation with the generalized-mean operator. As-
sume, for a while, that f(z)-Ax(z) = 0 and f(2)-(m*),
(@) = 0 for all z. Let us use the notation g(x;; p= + oo,

wi) to denote lim g(xi;p, w). Then erosion and di-
p-—.*m

lation can be represented using the generalized mean :

Erosion: (f @ g)(x) =min{ f(z) ~7,(z): 2 € D[k, ]}
=g{f@) —hlz):p=—00, w;} (7a)

Dilation: (f @ gXx) =max{ f{z) ~ (") (2) :z € D[(n¢ )1}
=g{ f@—m*)(2):p=+, w;}.
(7b)

To avoid the assumption that f(z)-2.(z)=0 and f(z)-
(7*)(z) = 0 for all z, we can use a one-to-one, in-
creasing function »:[ —0, +0]—[0, +0]. This mo-
dification yields modified definitions of erosion and
dilation:



Frosion: (f@);g)(xj =gir| f(@)—h(2));p=—c0, w;}
(8a)

Dilation : (f @, £)x) =g{7[ (D)~ (m*)@)];p=+0, w;}.
(8b)

Note that the weighting factor w;’s do not play a role
in these definitions. These modified definitions have
empirically shown that they behave similarly to ordi-
nary ones with the unipolar sigmoid function for »
[27, 28].

At this point, defining fuzzy erosion and dilation is
straightforward. They are formalized as

Fuzzy Erosion: (f @ 2)x) =g{r[ (@)~ hl2)]; p<0, wi}
(%92
Fuzzy Dilation: (f @ y g)x) =g {r[f (@) —(m*):(2)]};p>>0, w;}.
v

Note that the output is harmonic mean if p=—1,
geometric mean if p=0, and arithmetic mean if p=1.
Also, the weighting factor w; is optional. If the factor
is involved, ihe definition is a “weighted” fuzzy ero-
sion and dilation.

3. NEURAL NETWORK IMPLEMENTATION

In this section, we introduce a shared-weight neural
network that performs classification and feature ex-
traction simultaneously. The first stage of the shared-
weight neural network has an adequate architecture
to perform the morphological operations of erosion
and dialtion defined in (1) and (2), respectively. Fea-
ture extraction stage of this network performs our
fuzzy erosion and dilation. Learning rule for the fea-

ture extraction network is also provided.

3.1 Shared-Weight Neural Network

The basic idea of the shared-weight network [17] is
to reduce the degrees of freedom in the network for
better generalization and to form high order features
from local features extracted by learned convolution

kernels. Fig. 3 shows the structure of the typical shar-
ed-weight neural network. This network is composed
of two parts:a feature extraction network and a fully
connected feedforward network. The feedforward net-
work is a classification network. The feature extrac-
tion network can have one or more layers, and each
layer can also have one or more feature maps. The
layer or layers in this network perform feature extrac-
tion by linear or non-linear convolution of its input
with the kernels (also called structuring elements, tem-
plates, masks, feature detectors). The convolution out-
put is subsampled. Therefore, the sizes of the feature
maps are determined by the sampling rate for the

convolution over their input.

\///
N\

\LX: Structuring
\ﬁ. Element
hﬁ: (Shared-weight)

Input(Image or Signal)

(Fig. 3) Architecture of the shared-weight neural network
with a single feature extraction layer in the fea-
ture extraction network and one hidden layer for
the feedforward network.

Nodes in the first feature extraction layer have a
small number of identical weights, and each node cor-
responds to a certain position in the input pattern.
Therefore, the number of free weights in a feature
map in this layer is dramatically reduced to only the
size of the its kernel over its input (plus the number

of the nodes in the feature map if there is one bias
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per nodej. On the other hand, the convolution oper-
ation in this layer antomatically satisfies the trans-
lation invariant property in the equations (1) and (2).
Furthermore, each node extracts local information
from its input.

Each feature map in a higher feature exiraction
layer has as many kernels as the number of the fea-
ture maps in the next lower feature extraction layer.
As for the first layer, the weights for the nodes in the
same feature map are identical and thus operation is
translation invariant. Furthermore, the nodes in this
layer combine local information coming from the fea-
ture maps in the next lower layer. Finally, the highest

layer provides the input forlthe feedforward network.

3.2 Node Operation

Previous work approximated the ordinary erosion
and dilation with the generalized-mean operator by
setting the parameter p to a large positive or negative
value [7, 30]. The nodes in the feature extraction net-
work performed a novel gray-scale Hit-Miss trans-
form which was defined as subtraction of the dilation
from the erosion. In other words, the parameter p
that represents the degree of membership was fixed
and a node in the feature extraction network per-
formed both approximated erosion and dilation.

In order to allow the nodes in the feature extrac-
tion network to perform a single operation (ie, p is
either positive, negative or zero), we first formalized

an equation:
F@r)0)=glr[f@—1:(@]:p, w:}. aon

This equation is equivalent to (9a) if p has a negative
value and (9b) if p has a positive value. Note that the
structuring element t; represents the reflected one
(m*), if p has a positive value.

3.3 Learning Rules
In equation (10), there are three set of parameters:
structuring element (t), degree (p), and weighting fac-

tor {w). Among them, strucluring element and weigh-
ting factor can be fixed. Furthermore, in general, the
struciuring element has been selected arbitrarily (i.e.,
zeros). However, a structuring element designed thr-
ough learning process produced better performance
[28], and weighting factor provides more degree of
freedom.

In this section, we provide the derivation for the
learning rules required to implement the learning al-
gorithm. Here we only show explicitly the derivation
of the learming rule for the feature extraction net-
work. The derivation for the classification network 1s
widely available from neural network literature [i6,
28, 29]. Assume that each feature extraction layer has
a smgle {eature map for simplifying the formulation,
and it can be easily extended for muitiple feature
maps. Suppose we want to update the parameters as-
sociated with node j. Let the output of the node j be

Oj=net;{ L ws[#(Oi—t) [P }V/m. (11)

In these equations, ; denotes the output of the node
j and O; does the input to the node j as well as the
output of the node i. Therefore, t; is 2 member of the
structuring element that associates the node j and the
node i. In other words, the first subscript indicates
the node in the next higher layer. In terms of the mor-
phological operation, the subscript j represents the lo-
cation of the origin (center) of the structuring element
in the input domain.

In order to take the denvative for the equation
(11), we first need to take log and obtain the follow-

ing equations:

log(net)) = -;— log{Y wilr(Oi—tp)]™}. (12)
] i
Taking the derivative on both sides of this equation
with respect to pj, tji, and w;, respectively, yields

dnelj

net;
=-——1 log|net}) +———— X wy’
apj ij ( 1 ) Pi+ -



{T(O,Flji)]m IOg[r(Ol_tji)]a (13a)
dnety 7(0; —t5) P! (0, —tp)
G wﬁ{ net; Oi—t) (136)
and
dnet; 1 RN
Sy = ot [0 ], (130)

Again taking the derivative on both sides of the equ-
ation (12) with respect to O; produces

dnet; _ { 10—t }v,-: or(0i—~t) 4)
=wj

30, net; 0 —t;)

Note that the last terms of the equations in (13b) and
{14) are described as

i~ 1

because we use the unipolar sigmoid function for 7.

Let d represent the parameters p;, i, and wj. For
gradient descent learning rule to reduce the error with
respect to d, we apply the chain rule and obtain the
equation

__OE @E onetj
Tad ~ "omet;  ad

(16)

Since the feature extraction layers are considered the
hidden layer in a feedforward network, the first term

of this equation can be defimed and written as

JE JE JE 80:  Jnety
4=- Jnety T a0; zk: ¢ 00, Jnetr 90 )
amn

where the node k is the one in the next higher layer.
This is called delta error of the node j in the learning
rule for the standard feedforward neural network. In
the same manner as for deriving (17), the first two

factors of (17) can be written as

8
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JE d0k JE

T30 ety o0, (18)

which is delta error of the node k which is in the next
higher layer than the node j. The last term of the equ-
ation (17) has two different forms, depending upon
which layer the node k belongs to. For the nodes in
the highest feature extraction layer, it can be written
as

2 <0 +bi
omet, (); wiy- Oy + biasy)

20 0

=W ’ (19)

since the node k is a ordinary node which calculates
the weighted linear combination of the inputs for its
net input nety. For the nodes in other feature extrac-
tion layers, from the equation (14), it can be written

as

dnety { (05— 1) ] Rl (0 —tyy) (20)

an = Wi ﬂetk E(OJ _tkj)

Therefore, from the equations (16) through (20), the
learning rule for the parameters(structuring element t,
membership value p, and weighting factor w) can be
obtained. In summary, the learning rule for the para-
meters associated with node j can be summarized by

dnet;
=y § o
Ad=n; 2d (21a)
where
dnety
L 5
5 2; k50, (21b)

The last factor in (21a) is given in (13) for all para-
meters p;, t;, and wj, and the last factor in (21b) is
given by either (19) or (20) depending on which layer
the node belongs to.

There are several implementation details for this
learning algorithm. The index k is representing all the
nodes whose output caleulation uses the output of

node j. Because t;’s are identical for all j’s in the same
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feature map, t;'s for all j's should be accumulated in-
stead of updating t;’s after every j, and then update at
the end. The updating rule for this shared-weight con-
strainl is well described in [28]. A practical problem in
implementing this learning rule is the limitation on
the magnitude of the parameter p;. Larger range
allows more accurate approximation of the ordinary
Min and Max operations. However, for large num-
bers, the region where the gradient for the generaliz-
ed-mean is non-zero is very small and the gradient is
very large in that region. Thus, the training process
may oscillate for large values. Note again that the
generalized-mean value is equal to harmonic mean if
p=—1, geometric mean if p=0, and arithmelic mean
ifp=1.

4. EXPERIMENTAL RESULTS

We conducted some preliminary experiments with
the shared-weight neural network that described in
the previous section for handwritten digit recognition
problem. We collected 1000 digits for each class from
the handwritten digit data base which were extracted
from the USPS mail pieces [27, 28, 30]. The digits
were normalized to the fixed size of 2418 using mo-
ment normalization[31]. Some samples of handwritten
digits are shown in Fig. 4.

Among the collected images, 600 digits per class
were used for trajning and 400 for testing the net-

00804200006000600000560
V2/V3724\172270V /700
X1A0943¢7R2244A442734
333333583333235333433
AL 4R Y (ALY
8855355578V 5E83IE594S
ClLlblbbBl6E0LELLLELEL
927177977 73171777772
FETCOZBTERETEZTTENTE
499929972999 927979?¢9

(Fig. 4) Some samples of size-normalized handwritten
digits.

work. The networks had a single feature extraction
layer with twelve feature maps and thirly hidden units
for the classification network. Subsampling rate of
two was used. The size of the strucluring elemenls
was 5X 5. We ran five experiments with different in-
itial values for the parameters. All parameters were
learned, except the weighting factors which were set
to 1/n where n was the number of the inputs.

For all experiments, the learning rate was 0.02 and
the momentum was 0.9. The training process was
stopped by the pre-selected maximum epoch of 100 or
Root-Mean-Squared-Error{RMSE) of 0.05. However,
for most our experiménts, the training process was
terminated by the RMSE critcria. The parameters
were initialized with the random values obtained from
the range [—0.5, 0.5] and the magnitude of the par-
ameter p was clipped at 3. As shown in Table 1, the
network produced the results which are favorably
comparable to those obtained from other approaches
[17, 27, 301

{Table 1) Results for handwritten digit recognition
problem.

Exp. 1 | Exp.2 | Exp.3 | Exp.4 | Exp. 5

Train | Epoch st | ® | 8 | n | ®
RMSE 00482 | 0.0491 | 0.044 | 0.0489 | 0.0487
Correction Rate | 99.0% | 98.8% | 98.8% | 99.0% | 98.8%

Test | RMSE 0.0698 | 0.0711 | 00714 | 0.0702 | 0.0706
Correction Rate | 95.3% | 95.0% | 948% | 950% | 94.8%

5. CONCLUSION

We have described a novel definition for fuzzy ma-
thematical morphology. The generalized-mean oper-
ator played a key role in this work. Our new defi-
nition is well suited for determining the parameters
using neural network learning paradigm. We used our
novel fuzzy morphological operator in the feature ex-
traction stage of the shared-weight neural network.

Therefore, a node in this stage of the network per-



forms fuzzy morphological operation that produces
the output values between the standard erosion and
dilation. Precise description f{or the learning rules is
also provided.

The shared-weight neural network that performed
our fuzzy morphological operation was applied to
handwritten digit recognition problem. We have de-
monstrated good results which are comparable to the
state-of-art for this problem [17, 27, 30].

The main goal of this paper was to introduce a new
definition for fuzzy morphological erosion and di-
lation. We believe that further refinements of these
definitions are necessary. Furthermore, our definitions
can be used as a node operation for other networks
such as the standard feedforward network, even
though we selected the shared-weight network for our
preliminary study. Also more applications including
gray-level images and signals should be considered for

future works.
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