SSHYUS 2T S TRIUOIMO) SAN MO 2H L SIF{H0IA A of 2t AT 631

FEHYL 9T 24 =2 IR 2] EA4 Ao]
EA) 2 lelso) 2 AA o) B A7

4 BT-o A oHt-e X BT A 8

H0

2 ek

xR TEAYL AY ¢4 T2 A A T HoAok ¥ AYEL BRET o] To| ARg-A} %
Eisflolze) vl e Gl 38 A7 AAE ARG LA} 22, SR AL AT N E
el 8RS T2 Ut FE YL AT 4 Teage AAn v A=dH AA ooz ALga} Qleln -
o2t At 2A L 71N L Aot el ZeavSe gdsn =E A dAYL Rass AL dH
o1& ATk A o]E S8 2B Holxel ¢ AlgETE 3A FAY Ao) A, A2" FH(topology),
AA g8 BA| o F(replication scheme) 52 T 4 At} o] & 71 S2% $2& TAA Aol Aol 2 =
T AER TS A ZA) A% YA TN Ao FFo] ALgA AEHo|2e] WA FE d7E
A % S A YA/ Coshed/SASE Fa) 9| 2459 HE o uer}.

On a Concurrency Control and an Interface Design of
Collaboration-aware Applications

Seok-Hwan Yoon ' - Jaeyoung Lee! - Chee-Hang Park' - Yong-Back Shin !

ABSTRACT

In this paper we discuss the elements which must be considered for collaboration-aware application design and
their effects on user interfaces. Collaboration-aware applications have inter-user and user/system interaction
features besides generic real-time distribution system features and this restricts the design freedom with the re-
quirement of consistent user interfaces. Programmers, therefore, must provide uniform and logically consistent
user interfaces to users and, for this end, they should consider main design features such as concurrency control
algorithms, system topology and object replication scheme. Among the design factors concurrency control
algorithms have relatively significant impact on user interfaces and we consider the impact of concurrency con-
trol algorithms along with that of the system topology and the object replication scheme., Coshed /SAS, a group
editor, is given as an example of application of the factors.

1. Introduction Recent surge of cooperative applications such as
shared editor and teleconferencing has created new

work environment known as CSCW(computer sup-
143 9823480474 ARgaA7g)])
114 8 Qe ad3est ported cooperative work). Users work in a virtwal

EEHP1996 24 169, QAL 1996 68 79 shared work space provided by CSCW applications

632 BimEERDEE =2 M X 3Z(96.5)

and can communicate with each other while working
on shared objects:documents, graphics and even multi-
media data. Cooperative applications have been con-
sidered as either collaboration transparent or collab-
oration aware[1].

Users of collaboration transparent applications are
unaware that more than one interface is provided.
Through the use of collaboration aware applications
users should be able to work in an environment, vir-
tual shared work space, that simulates an ordinary
collaboration environment in which users are highly
informed of other users’ activities. Imperfections of
network, however, present serious obstacles main-
taining a unique copy of the workspace and users can
be presented with different realizations of the shared
workspace. The user interface inconsistency is further
distorted by simultaneous user inputs and can
seriously degrade effectiveness of collaboration aware
applications.

In this paper, we analyze the concurrency control
problem and the effects on user interfaces of collabor-
ation aware applications. The importance and im-
pacts of concurrency control on groupware applicat-
jons have been researched by many researchers(2,3,4,
5,6,7. We present a few issues of collaboration
aware applications and Quadruple notation scheme.
We, then, study the relationship between such factors
as concurrency control and system configuration and
user interfaces. We consider Coshed/SAS a graphical

group editor as an example.

2. Collaboration Avware Applications

Collaboration aware applications feature most as-
pects of distributed systems and require another con-
sideration over traditional distributed systems:Mul-
tiple Human-to-Machine interfaces are provided and

they are communicate in real time.

2.1 Issues
Visualization If each user sees a slightly different or

out-of-date version then the session’s cohesiveness is
soon lost. WYSIWIS(What You See Is What 1 See) in-
terfaces require fast response time and an appropriate
concurrency control mechanism.

Distributed Usage of groupware applications in
wide-are networks where users are separated by great
physical distance is one of the main advantages of
groupware applications. Developers should take suit-
able counter measure for slow response time caused
by the physical separation.

Replication Because the response time demands of
collaboration aware systems are so high, the object
table is usually replicated for each participant. This
allows more time critical operations such as window
redrawing caused by window repositioning or scrol-
ling to be performed locally.

Volatility Participants are free to come and go dur-

Ing a session.

2.2 Quadruple Notation

For further discussion we assume the object table is
replicated over n modes. An object table is a one-
dimensional vector whose elements are also vectors.
In the simplest case of a text editor, objects are
characters and the object table is character strings.
Objects of graphical editors contain more attributes
such as color, bounding rectangle and line width.
Operations are defined as replacement of a contiguous
subarray with an array of objects and can be pre-
sented as quadruple vectors. Below we summarize

notations necessary for further discussion.

Object X
Object table VA ={Xy, ..., Xi, Xm}

wherei=1,2, ..,m and j=1,2, ., 7
Operation O=(m &, Vous, Vcw)

Vednew =1%1s e Xi'y v X'}

where m is the cardinality of the object table and # is
the number of nodes of the system. The object table
VAD={%1, - i, .. Xm} corresponds to the object

table of j-th node at time f. If object tables match
with each other, index 7 can be removed and the
table is called the reference object table at time f. Be-
low we assume the initial object tables are the refer-
ence table, Vg and Vrew correspond to an old sub-
vector and the replacing vector. Definition of conti-
guousness of a subvector is intuitive. A subvector V'~
={x", ..., X, .., X’} is contiguous with respect to
the original vector ¥ ={%i, ..., X;, Xm} if

Xj'= Xj4r—1 and x_," # NULL

where 7=1, ..., and £ is the original index of the be-
ginning object of the subvector. When Vg is null the
operatlion is insertion and if ¥uew is NULL the oper-

afion is deletion.

Given O=0m, k, Vaid, Vew)
If (Voi!=NULL)
replace the subvector Vold with the new vector Vo
else if (k==m)
append the new vector to the original vector.
else

insert the new vector after A-th object

The requirement of the contiguousness of a sub-

Sjte 1 Site 2
O,

0,

Or

O,

(Fig. 1) Example of event re-ordering

SHYS 9T S TTOBUIMY SAIN MO 2H = SIETOIA MA0] T 47 633

vector is a pure design issue. Since users usually cre-
ate a compound object with logically connected basic
objects the notation offers logically maximal and ap-
plication independent units. Another design issue is
that there are two choices of defining insertion point
when insertion parameter % of the quadruple vector O
is given:Before or after the %-th object. Below we
present an exemplary algorithm in which the new ar-
ray is inserted after the A-th object.

2.3 Concurrency control problem

The core of concurrency control problem in collab-
oration-aware applications is non-commutability be-
tween two generic operations O1(fy) and Ox(f;). Using

the commutator notation this can be put as
[0;, Oj] = (4 ="0_,'—Oi *0_;7‘:0.

This corresponds to the situation where operations
are overlapped and executed in the opposite order at
each site and the situation is graphically shown in
Figure 1. The aim of this paper is not to address this
problem which is well-known in distributed systems.
CSCW environment has one major issue which is not
discussed in distributed systems: User interaction. In
the next section we discuss the effects of and the re-
lation between the concurrency control and user inter-

faces.

3. Concurrent User Interaction and Ef-
fects on User Interfaces

3.1 User Interaction

Interaction is an action that is influenced by the
presence of, knowledge of, or the activities of another
person. For routine collaborative activities, users can
make decision with high knowledge of other partici-
pants. In CSCW environments, however, user knowl-
edge is limited to the space(virtual shared workspace)
provided by the system and user interaction based on

limited information can be errant.

634 BRFEX=T =FX| MIF M 32(986.5)

Interaction belween distributed sites can be thought
of as the exchange of m'es;s-a'ges or execulion events.
An event goes through many stages before it is com-
pletely carried out:creation, local execution, franms-
mission, reception and remote execution. Without con-
currency control events created in different sites may
not be executed in the same order. As an example,
consider a graphical editor shared by a group of
users. Users 4 and B simultaneously operate on a
centered circle by drawing a line passing through the
center of the circle and moving the circle up, respect-
ively. The resulting diagram is shown in Figure 2. The
final result mismatches both users’ intentions and ad-
ditional corrective actions must be taken by the users.

From the simple example it is obvious that the con-
cept of unique shared workspace and unique shared
documents is an idealization of real world situation.
Network delay distorts the ideal implementation of
single copy shared workspace into possible multiple
copy shared workspace. User action is displayed to
other users with finite amount of time delay which
can mislead users to make incorrect judgment of what

others are doing.
3.2 Concurrency control and user interfaces

Conflicts of user interactions can happen frequently

and unexpectedly. Without proper mechanism of cor-

O

initial
O configuration @
UserA s UserB s
intention O / intention
{inal

configuration

(Fig. 2) An example of a graphical shared editor

recting conflicts, loss of logical context is unavoid-
able. Many algorithms have been deviscd to prevent
or restore the system from conflicts, and applied to
real applications with success of varying degree. We
reviewed basic concurrency control algorithms Jock-
ing, token, timestamp ordering, and optimistic concur-
rency control.

Locking Locking is the most common in groupware
applications. Before a user operates on an object he
should request a lock on it. Depending wpon the lock
status of the shared object, the replication server re-
sponsible for the lock management verifies the request
and decides whether to grant or reject the request.
After the user acquires the lock, he has the exclusive
right to manipulate it. Other users who want to mod-
ify the shared object have to wait until the lock is re-
leased by the lock owner. This behavior is radically
different from collaboration transparent applications
which allows users to work on any object at any time.

Consider two collaboration aware applications:a
group drawing and a group editor. In group drawing
tool, drawing object are circles, lines and other geo-
metric objects. Text objects in a group edifor can be
paragraph, line or the whole text. As long as user A
and B work on different objects, there is no conflict
and both continue without noticing presence of the
other. If, however, a user attempts to modify already
locked objects he may see very unmatural and possibly
annoying behavior: the objects won’t move. In actual
implementations locked objects can be grayed out so
that users can be aware of the fact.

Locking in collaboration aware applications is sim-
plest to implement but the behavior of locked objects
can be annoying to users.

Token Some derived algorithms worth mentioning
are token-based algorithms, The token-based algor-
ithm is a variation of locking. The token holder has
the exclusive lock on the whole object table and con-
current operations are totally prohibited. Even though
the concurrency control in token-based algorithms is

very easy users may perceive turn-taking as unnatu-

TEUYS 2T S8 T2IUOIMO| SAIL FO 2R 2 QIEHOIA 40 TS 017 635

This is the first line in the first]
paragraph. And this is the second.

And now we have another
paragraph,[Jvith its own first line. Here is
the second ling in the second paragraph.

(2)

(b)

(Fig-3) a) A group drawing tool, and b) a group editor

ral.

Timestamp ordering Qperations from clients in the
timestamp ordering algorithms are processed in the
order of the timestamp jssued according to a pre-de-
fined rule. Timestamp ordering achieves global
serialization by issuing globally unique timestamps.
But the global serialization may or may not coincide
with logical serialization(See Figure 2).

Optimistic In groupware applications based on the
optimistic concurrency control mechanism, a user can
proceed with his operations on shared objects until
the operation is verified and committed. Operation
verification and commitment is handled by the repli-
cation servers. If all servers decide to commit and
consensus among them is established, the originating
client is notified and local object table is updated.
The user proceeds with his work unaware of the veri-
fication process. Therefore, as long as conflicting oper-
ations rarely occur, the optimistic concurrency control
algorithms give cooperation aware applications the
closest feel of cooperation transparent applications. If
consensus is not established, however, and the oper-
ation is aborted, the client must process the abort
message and roll back to the reference state. This pro-
cess of rolling back can be quite hard to implement
and confusing to users.

Given 01(t1) and Ox(t2)
it (O, OAt)]==10)

V resun = 02D ™ O\ V s ference
else {

V resuti =V reference

NotifyUser

Replicated vs. centralized architectures Groupware
researchers have long argued the merits of centralized
vs. replicated architectures. On the surface, the sim-
plest way of implementing concurrency control is
through a centralized architecture. Synchronization is
easy, as slate information is consistent since it is all
located in one place. Events will never be received out
of order(they are usually handled first-come, first-
served), Locking is also easy, as only one copy of the
object exists. Replicated architectures, on the other
hand, execute a copy of the program at every sife.
Thus each replication must use specific concurrency
control algorithms to coordinate their actions and
must worry about handling roll-back if optimistic
schemes are used.

Because of its simplicity at handling concurrency,
centralized architectures for groupware has had many

advocates, and one may wonder why a replicated ap-

63¢ SITEEHMoIEETE =X M3T M3Z(96.5

proach would ever be considered. The answer con-
cerns lhe issue of latency. A cenfralized scheme jm-
plies sequential processing, and is inherently non-opti-
mistic. A request is received and handled by the cen-
tral application before the next one can be dealt with.
If ihe system latency is low, this is not a problem. But
if it is high, the entire system will become sluggish. A
replicated scheme, on the other hand, implies parallel
processing which maximizes the use of optimistic
schemes. Events can occur in parallel at each repli-
cation, with the optimistic method mediating any
problems. While overkill for low latency, it can ad-
dress the interface issues in systems that have notice-
able delays.

There is no real answer to whether a centralized or
replicated scheme works best for groupware. Rather,
it is a set of trade-offs that revolve around the way
they handle latency, ease of program installation and
connection, programming complexity, synchronization
requirements, processor speed. the number of partici-

pants expected, communication capacity and cost,

and so orm.

{Fig. 4) Coshed/SAS-An example of collaboration aware
applications

3.3 Coshed/SAS

In Figure 4, we presented the architecture of Co-
shed/SAS, a graphical group editor, which has a hy-
brid structure of the replicated/distributed and the
server architectures. Coshed/SAS consists of three
parts. Coshed is the graphical editor part of the sys-
tem. SAS(Shared Area Server) is the object server and

also functions as the central communication point.

SACI(Shared Area Client Interface) is the communi-
cation client and Coshed uses APIs offered by SACI
to communicate to SAS. All objects reside in a virtual
common space-Shared Area-maintained by SAS. For
robustness and logical consistency, SAS/SACI archi-
tecture uses locks as the exclusive concurrency control
algorithm. Update operations to shared objects are
handled by SAS. Unless otherwise noted any changes
in Shared Area are, then, broadcasted to participants
including original senders. All user interfaces even
that of original sender’s are updated only after the
broadcast message is received. So simple operations
such as line drawing(releasing mouse button) are r;ot
immediately reflected on local user interface. This ap-
proach, however, contrary to the initial perception of
sluggishness, does work well in many situations.
Users can be assured that other users’ interfaces have
been updated correspondingly by observing operat-
ions being realized.

Another point worth mentioning is the genericity of
objects supported by SAS. SAS does not have pre-de-
fined object format proprietary to SAS. Only attri-
bute handled by SAS is lock status of the object.
Other attributes are defined by applications. Five gen-
eric operations on objects are defined in SAS/SACI
architecture : CreateQbject, UpdateObject, LockObject,
UnLockObject and DeleteObject. Therefore, by using
SAS/SACI architecture as the communication layer
and using locking facilities offered by the architecture
as the exclusive concurrency control method, applicat-
jons can be completely shielded from the concurrency
control operations. To exchange other messages ap-
plications can use two other communication features
provided by SAS: Broadcast and TalkTo which corre-
spond to broadcast and peer-to-peer comtnunication,
respectively.

This scheme works best in local are network where
network latency is tolerable in most situations. To
provide different concurrency control algorithms ap-
plicable in situations where network latency is measur-

ably large, however, current implementation of SAS/

T2 IHOIMO SAIY RO BRI 2 SIEIHOIA A0 Bt 017 637

-i Update(m, k{object}, object)

i request is approved by SAS and

: broadcasted to all SACL

\. Ret‘:u'mgle _. The rectangle is

resizing actually drawn
operation is after approval
ﬁmsht_:d by message is
releasing mouse received from
button SAS

(Fig. 5) How user input is updated through SAS to local GUL.

SACI architecture should be extended. For this end
usage of Quadruple notation can be helpful. Firstly, it
reduces the five object manipulation functions into
one, Update(m, k, {object{aitributes)}, {object(attributes)}).
Below we present how the five separate operations

can be represented as one operation.

SAS/SACI Quadruple notation
CreateObject(object) Update(m, m, NULL, {object})
UpdateObject{object ID) Updare(m, k. {object(attributes)},

{object(attributes)})
Change attributes to attributes

LockObject(object ID) Update(m, k, {object(... Jock flag,..}},
{objeci(... Jock flag...)})
Change lock {lag of the object locked
UnLackObject(object ID) ~ Update(m, k, {object(....lock flag,..)},
{object(... Jock flag,..)})
Change lock flag of the object to unlocked
This operation is granied only to the lock holder of the object

DeleteObject(object ID) Update(m, k, {object}, NULL)

It also allows seamless incorporation of additional
concurrency control algorithms since concurrency con-
trol operations are transferred from SAS to Coshed,
local applications. In this way application developers
can benefit from such features offered by SAS as
member access control, automatic update broadcast-
ing, and peer-to-pecer communication while enjoying

developmental freedom of choosing appropriate con-

currency control and replication schema.
4. Conclusion

In this paper we reviewed the inherent problem of
concurrency control in collaboration aware applicat-
ions and its effects on user interfaces.

Quadruple notation is presented as the descriptive
basis of operations in collaborative aware applicat-
ions. In this notation the object table is a state vector
and operations are transformations defined on the
state vectors and can be represented as quadruple of
two integers and two sub-vectors.

Collaboration aware applications bave one notable
feature that regular distributed systems lack:Inter-
user interactions. The user interaction feature can be
realized into four issues that must be addressed by ap-
plication developers:Visualization-Applications must
provide WYSIWIS(What You See Is What I Se¢e) in-
terface with fast response time and an appropriate
concurrency control mechanism. Distributed-Users of
collaboration aware applications need not be located
geographically closely. Developers should incorporate
necessary counter measurcs. Replication-Even with
many useful features that centralized system offers
such as ease of implementing concurrency control al-
gorithm, replication of the object table necessary for
collaboration aware applications. Volatiliry-User can

join and leave as needs arise. To address these issues

638 EFEACIEE =ZX H3H H 35=(96.5)

developers should solve the design issues such as
choice of one or combination of concurrency control
algorithms-locking, token, timestamp ordering, optimis-
tic concurrency control-and the replication/centralized
debate in conjunction with user interfaces.

A group editor, Coshed/SAS, is presented as an ex-
ample of collaboration aware applications. Coshed is
a graphical editor which uses SAS/SACI architecture
as communication and concurrency control layer.
SAS was developed lo simulate a virtual shared work
space and through use of locking as the exclusive con-
currency conirol mechanism, SAS/SACI offers collab-
oration-transparency (o the application developers.
Developers can use five generic operations including
lock/unlock operations and do not have to worry
about the implementation as long as they only use
locking. This approach, however, found to be inap-
propriate in situations where users are geographically
separated and network latency is not ignorable and
other concurrency control algorithms that allow more
concurrent user actions such as optimistic concur-
rency control algorithms.

A possible extension of Coshed/SAS by using Qua-
druple notation is discussed, In the extension five gen-
eric Coshed-to-SAS operations are represented as one
operation Update({m, & Vo, Vew}) and there is no
concurrency control specific operations, Application
developers can use the new SAS/SACI architecture
and benefit features such as the network transparency
while customize collaboration specific features includ-

ing concurrency control mechanisms.
REFERENCES

[i] J. C. and K. A. Lantz. Collaboration awareness
in support of collaboration transparency: require-
ments for the next generation of shared window
systems, CHI 1990 Proceedings, {CHI, 1990) pp.
303-310.

[2] C. A. Ellis and S. J. Gibbs, Concurrency control

in groupware systems. In Proceedings of the

ACM SIGMOD International Conference on the
Management of Daia, (1989) pp. 399407,

[3] 1. Grief, R. Seliger and W. Weihl, Atomic data
absiractions in a distributed collaborative editing
system. In Proceedings of the 13th Annual Sym-
posium on Principles of Programming Languages,
(1986) pp. 160-172,

[4] A. Karsenty and M. Beaudouin-Lafon, An algor-
ithm for distributed groupware applications. In
Proceedings of the 13th International Conference on
Distributed Computing Systems ICDCS'93, (1993).

[5] M. Knister and A. Prakash, Issucs in the design
of a toolkit for supporting multiple group editors.
Computing Systems (The Journal of the Usenix
Association), 6(2), (1993) pp. 135-166. ‘

[6] R. E. Newman-Wolfe and H. K. Pelimuhand-
iram, MACE:A Fine Grained Concurrent Edi-
tor, In Proceedings of the ACM COCS Confer-
ence on Organizational Computing Systems, (1991)
PP. 240-254.

[71 G. Coulouris, J. Dollimore and T. Kindberg,
Distributed Systems-Concepts and Design, Ad-
dison-Wesley Publishing Company, Wokingham,
1994.

[8] K. P. Eswaren, J. N. Gray, “The Notion of Con-
sistency and Recovery in a Database System,”
Comm. of ACM, vol, 19, no. 11. (1976) pp.
624-633.

[9] P. A. Bemnstein, N. Goodman, Timestamp Based
Algorithms for Concurrency Control in Distri-
buted Database Systems, In 6tk International
Conference on Very Large Daiabases, (1980) pp.
285-300.

[10] H. T. Kung and J. T. Robinson, “On Optimistic
Methods for Concurrency Control,” ACM TODS,
vol. 6, no. 2, (1981) pp. 213-226.

[11] J. Huang, J. A. Stankovic, K. Ramamritham and
D. Towsley, “Experimental Evaluation of Real-
Time Optimistic Concurrency Control Schemes,”
In I19th International Conference on Very Large
Data Bases, (1991) pp. 35-46.

[12] S. R. Ahuja, J. R, Ensor, and §. E. Lucco, “A
comparison of applications sharing mechanisms
in realtime desktop conferencing systems.” In
Proceedings of the ACM COIS Conference on Of-
fice Information Systems, Boston, April 2527
(1990) pp. 238-248.

(13] S. Greenberg, “Sharing views and interactions
with single-user applications.” In Proceedings of
the ACM COIS Conference on Office Information
Systems, Boston, April 25-27 (1990) pp. 227-237.

[14] 1. F. Patterson, R. D. Hill, S. L. Rohall, and W.
5. Meeks, “Rendezvous:An architecture for syn-
chronous multi-user applications.” In Proceedings
of the ACM CSCW Conference on Computer-Sup-
ported Cooperative Work, Toronto, November
7-10 (1990) pp. 273-280.

1982 249 o}pistm g
SH(F 54D
19843 28 AJdigw 297
B F A
199213 39 ~8A opFrgtw 4
HEet vt
%+
19923 39 EFA g J&A AE A=
19863 1€~HA VIAAZNATL HYATY
TUEEZEA, $/W B8, AAF R A 2q

2 A g

LEJHOIME SAIM RO 2H R AHBOIA 8Ai0) Do 12 639

o o 4
1988 28 AMgjstm Eeet
THe] gtA})
1990'3 59 The Johns Hopkins
Univ.(o] 8t A})
199433 89 The Johns Hopkins
Univ.(e] &u}A})
19943 129~8a #ZA=EA
Qd Azt
deoj@za
TARF2HA A, F4A, S/W 25}

5 x| @
19749 29 Medidw 42
& sh2{o] &a}) .
1980d 29 g=ztetyd A
o] &4 Ah)
198713 129 9] 68 Aargt
FHF g
1974 22 ~1978\1 29 §t=3}
}r7ledrL 479
1978'E 28 ~19853 79 XA/ E Q7L MY
+94
19859 74~8A FZAAENATL: AYA7
e t]oj@)
TR EEN O], RAA2Y, 28], YES
AQAFY, do|AE o}7)dA, A4 A

SRR

19643 28 QA gw sshetaHE AN

19683 89 Fulshm 2T BT 42D

1987 29 Fgoi b Qg (F oAy

19734 109 423 7164 A4 8=

19769 39~ o}Ruttm Ao w4
A

THER AL L AT, AP RN 2y

