672 SRBEXEIEE ==X H3H M35 (96.5)

o AA RE e AR RSz W

o] & ET.:'_L = ngTT_%_ = i”

[=]
- i

2 o
£ e=Ee 44§42 45 g2 disis gngse Add. o] F2AFL AL Trhe] Wy

22 A%GL, of AN WA E A4)¢ A4 39T FAU. o] WY YTAZE Aol HeAQ
A2 AR 4N B ohiet Sokel AolAde 43T + 9l

A Translation of an Object Calculus into an Object Algebra
Hong Ro Lee " - Hoon Sung Kwak 't - Keun Ho Ryu !
ABSTRACT
In this paper, we propose an algorithm to transform an object calculus into an object algebra. The alporithm

translates the calculus expression into an cquivalent algebra expression, and it maps the object algebra expression
to an object algebra operator graph. This translation algorithm not only generates an efficient access plan of

queries, but also proves the equivalent expressiveness of queries.

1. Introduction

Object-oriented database systems applied to object-
oriented data model can reduce the semantic gap be-
tween real world entities and database entities. The
database systems have been proposed to the solution
that is suitable for providing the data management fa-
cilities for applications such as computer aided de-
sign, office information system, and multimedia sys-
tems. Most of the proposed solutions have focused on

complex objects together generation inheritance(l, 2.
3l.

t & 3 9:Department of Computer Science, Chungbuk
National University, Korea
11 %429 :Department of Computer Science, Chungbuk
National University, Korea
111 4129 :Department of Computer Engineering, Chon-
buk National University, Korea

EEE 19959 94 59, AAgE:1996d 39 129

Bancilhon[4, 5] specified a calculus for a complex
object that is based on the orthogonality of a seman-
tic data model, and also Codd[6] divided the first or-
der logical calculus into the relational tuple calculus
and the relational domain calculus, Roth[7] investig-
ated the nested relational calculus that was extended
to a relational data model. Osborn8] described an
object algebra which views objects as passive data not
supporting encapsulation. His algebra allows aggre-
gate or set objects to be disassembled and then reuses
in later stages of a query. Shaw[?] developed the ob-
ject algebra which support encapsulation, but only al-
lowed unary method to be used in qualifying algebra
operators. Also, he not only defined object-oriented
data model based on ENCOREI9] which supported a
tuple constructor such the nested relational data
model, but also specified algebra operators “Dup-

Eliminate” and “Coalesce” to remove a redundant
objects which are generated newly. Straube[l0] de-
fined an object calculus and an algebra expression for
the formal query processing which supports encapsul-
ation. He proposed the atom place routine for an al-
gebra operator graph visually and an algebra ex-
pression, which translates calculus inlo algebra. These
investigations are restricted fo rewriting rules of the
algebra expression and the algebra operator graph of
simple objects. Therefore, the object-oriented systems
need a formal query processing as well as an algebra
translation algorithm that should not generate the
anomaly of a schema evolution by aggregation in-
heritance.

In this paper, we specify an object-oriented calculus
for the declaralive query processing based on object-
oriented query model together with aggregation in-
heritance. Also, we propose a method which trans-
lates the objecl calculus into the object algebra for the
procedural query processing. The algebraic operators
support object-preserving and object-creating oper-
ations, and analyze a prenex normal form of an ob-
ject calculus, and lead to the corresponding algebra
expression. The generating condition of algebra oper-
ators is described in order to compute the translated
algebra expression. The stages of the translation al-
gorithm are explained.

This paper proceeds as follows. Section 2 specifies
the object-oriented query model. Section 3 specifies
the object calculus and object algebra. Section 4 pre-
sents an algebra translation algorithm of queries. Fin-

ally, section 5 contains conclusion and future work.
2. Object-oriented query models

For this query model, we not only use the common
object-oriented concepts such as the object, class, and
inheritance, etc., but also distinguish aggregation re-
lationship from the arbitrary association relationship
and incorporate aggregalion inheritance in the aggre-

gation class hierarchies.

ZiX| BHM S | D2 0f Wz 673

A complex object is accomplished by the recursive
orthogonality of atomic objects and constructed ob-
Jects, and so on, set, tuple, and list, etc.[4, 11]. All
objects that have the same attributes for the data part
and the same methods for the operating part are col-
lectively referred as a class. Thiey are arranged in such
a way that a class(subclass) inherits the attributes and
methods from other class(superclass). In the class hi-
erarchy, the subclasses have a generalization relation-
ship. In the class composition hierarchy, the attribute-
domain relationship divides the association relation-
ship into the aggregation relationship. The former is
used to model arbitrary associations of objects, where
the transitive and antisymmetric features have “Has-
A" relationship between two independent classes. The
latter is used to model an object composition relatic‘m-
ship, which carries on the “Is-part-of” semantics be-
tween individual objects. It is a tightly coupled form
of association with some extra semantics such as
transifivity and antisymmetric properties. Therefore,
the class composition hierarchy is a semi-lattice strug-
ture[12).

From the polymorphic point of a view, the subclass
inheritance reflects a universal polymorphism whose
polymorphic characteristics are inherent from all the
circumstances, and the coercion is not necessary.
Whereas an aggregation inheritance exhibits an
ad-hoc polymorphism which exists only at the syntac-
tic level and disappear at the close range[13].

Consider a database schema for complex objects as
a collection of schema rules of the form C=(A, ...
Au), (C(A ... A, for short), where C is called a class
and A; is called an attribute name. Ai(1<i=<n) is
called a higher-order attribute function of the class C
(Hfn(C)), if it is an atomic set-valued attribute name
or if it appears on a left side of the same schema rule.
Otherwise, A; is called a zero-order attribute function
of the class C(Zfn(C)) which returns a single atomic
value for each input. In the attribute-domain relation-
ship, a set of all attributes are called Lfn(C) if it is
left side attribute function. That is, Lfn(C)=Zfn(C)

674 ot2EgXc|Eel =2X] M3El X 35(96.5)

FPERSON
p-name
birthday
DOCUMENT home address CITY-ADDRESS
title ’ ct-name
docno zipcode
authors EMPLOYEE
contribute-tn ——— hiredate
chaplers salary
affiliates COMPANY
status
cp-name
PROJECT location
contract# president
proj-name
Ieader / \
budget BUS-COMPANY TRUCK-COMPANY
documents
coc-size I weight I
l] CI;IhAPTER FIGURE
egen aplerno fig-position
c?xap!erude fig-coption
fignres bitmap-nc
generahzatlon . aggregafion I association
inheritance inheritance reference

(Fig.- 2.1) A Schema of a Class Composition Hierarchy

+Hfn(C). In the class composition hierarchy, an
attribute function space of a given class C is denoted
by Fspace(C).

Let A be a member of the Fspace and Path(A[C)
denoting the path expression of an attribute function
A of an class C. Then, the aggregation path ex-
pression of the attribute function A with respect to
the class C is defined as Path(A[C]) =C.A without in-
tenn-ediate attributes by an aggregation inheritance.
And it traverses an acyclic query graph. The associ-
ation path expression denotes “C.A=C;. self” if G is
a referenced class and “self” is a keyword used by
Smalltalk, and it traverses cyclic query graph[12, 14].

A schema of a class composition hierarchy is
shown in Figure 2.1. The major benefits of the aggre-
gation inheritance are as follows. First, it is increasing
of the reusability of the schema specifications and
database programs using the combination of aggre-
gation inheritance with the subclass inheritance. Sec-

“ond, the queries with aggregation inheritance do not

require to provide the explicit navigational operators.
Finally, it does not gencrate the anomaly of schema

evolution.

3. Object calculus and Object algebra

For the formal query processing, a representation of
a suitable query has to include an expressiveness of qu-
eries and also specifies an object calculus and an ob-

ject algebra for the internal representation of queries.

3.1 Object calculus

The object calculus defines a query result through
the description of its properties. In order fo define a
complex object calculus that supports the properties
of a class composition hierarchy, the forms of caleu-
lus are restricted to the domain of a database schema
[12].

The used obiject caleulus is similar to the tuple cal-
culus of Codd[6]. The notation of the object calculus

is {Ol®(0)}, where O is a complex object. variable
within a database, and & is a formula that is com-
posed of atoms. The representation of the complex
object calculus consjsts of two parts:a target list and
a selection expression. The target list defines the free
variables in the predicate and it specifies the structure
of the resulting class. The selection expression spec-
ifies the contents of the class resulting from the query.

The atomic formula is a predicate which returns a
true or false object. As comparison operators com-
pare with two terms in the selection expression, they
are boolean expressions that carry out the logical
compatison between two attributes and/or the attd-
bute and constant. The comparison operators are
scalar operators(==, =, #, <, =, > =), s¢t in-
clusion operators(==, =, #, C, €, =, 2), and set
membership operators(€, &, 2, ®).

A formula for selecting a collection of objects from
a database, denoted by @, is recursively defined as
follows.

[definition 3.1] WFF(Well-Formed Formula)
i Xb =true(or false) is formula.
ii)0 =AUB, Alic and cZA is formula, where,

(@A and B are comparable attributes returning
atomic values, and % is in {==, =, ¢, <, <,
>, =)

(b)A and B are comparable attributes returning
set values, ¢ is an instance of the attribute A,
and#isin{€, &, ==, =, #, ¢, €, D, 2},

iii)If ¢, &, and &, are formulas, then the disjunction

&1 V@, the conjunction @, Ad; and the negation

|® are formulas.

iv)If @ is a formula and x is free variable in &, then
the (Fx)&[x] and (Vx) & [x] are formulas.

v)Formula is closed to parenthesis. If there is no
parenthesis, then the priority of operators is in the

order of 3/V, 1, A, and V.

vi) Nothing else is a formula.]

The formulas in the forms of i) and ii) are so-

YN HH S 2| HrZ0) W 475

called boolean expressions(atoms). Besides, all the
variables used in the formulas are loosely typed, i.e.,
bound to a database schema class. When @ is empty,
we treaf it the same as a true formula.

Then, here is examples of the object calculus ex-
pressions. By means of user’s query language, this
work introduce NxOQL(Next Object Query Lang-
uage) which is SQL-like syntax proposed in [12]. Ex-
ample 3.1, 3.2 and 3.3 represent the queties for the
aggregation inheritance, association reference and

returning sub-objects, respectively.

[Example 3.1] “Find documents with a figure
under the caption “Multimedia diagram™.”

Its NxOQL syntax and object calculus are expres-
sed as follows:

SELECT d
FROM DOCUMENT:d
WHERE d. fig_caption = “Multimedia diagram”

{t{t e DOCUMENT(d) Ad.fig_caption = “Multimedia
diagram™}

[Example 3.2] “Find all the employees who are
also the president of the company.”

Its NxOQL and object calculus are expressed as
follows:

SELECT e
FROM EMPLOYEE:e, COMPANY :c
WHERE e, self =c.president

{] Iti(€ EMPLOYEE(e)(e Aty € COMPANY(c))
Ae.self = c.president }

[Example 3.3] “Find the name, birthday and salary
of employees whose salary is less than $30,000.”

Its NxOQL and object calculus are expressed as
follows:

676 SIEEEHRISE =R X B3 H 3% (96.5)

SELECT e.p-name, e.birthday, e.salary
FROM EMPLOYEE:e
WHERE e.salary < 30000

{t! Jt.€ EMPLOYEE:eAt=[p-name, birthday, sal-
ary] Ae.salary << 30000}

After all, from those examples for object calculus
expressions, we can show that the object calculus

satisfies the closure properties of query language.

3.2 Object algebra

This seclion describes an object algebra for the pro-
cedural processing of queries. For the closure prop-
erty of the object algebra, the output classes of each
operators are described and the relationship with the
jnput objects is analyzed through the semi-lattice
structure of “Is-A” class. As the input and output
objects of the operation define a set of objects, each
operation can be applied to the set-valued attribuies
or query results. The operation can be defined for-
mally.

For the procedural processing of the object-onent-
ed queries, the algebra operators which are defined by
Ling(14) are used. The algebra operators of complex
objects are specified below.

Selection operators are composed of unary selection
and multiple-operand selection. Unary selection returns
objects that satisfy the predicate condition(F). Its
inputs are the instances with various attribute func-
tion names(ie., a zero order attribute name and it
through the generalization/aggregation relationship)
in a class composition hierarchy(R;). The unary selec-
tion is denoted by 6(F, R). And, multiple-operand
selection returns objects which satisfy the predicate
condition(F). Its inputs are the instances with an
attribute function name through the association re-
lationship in a class composition hierarchy(R;, (Ra,
.y R)). The multiple-operand selection is denoted by
6*¢(R1, {Rgz, ..., Ra)).

Projection operalor of an object is a class-specific

-unary operator to the collection of complex objects.

The projection returns objects that are only related
with the sub-attributes(X) from the all attributes in
dlass hierarchy(R). The projection is denoted by TI(X,
R).

Join operator extends the nested relational join in
order to manipulate queries on the value-based ob-
jects. In the classes with association reference, an ob-
ject identifier use for preserving the reference projec-
tion as well as removing the object reference, which
specifies the special operator that is called “follow-
up”. In two class R; and Ry, join predicate condition
(F) is t. AUt". B, where A and B is comparable attri-
bute function name, t€R; and t"€R,. % is compari-
son operators. The join of object is denoted by (3
(R;, R2). Followup operator is used to eliminate the
attributes of a class by instances which are referred to
object identifiers. In two classes R and S together
with association relationship, Lfn(R) and Hfn(S) are
the zero order attribute function name of class R and
the higher order attribute function name of class S,
respectively. And, B is the referenced attributes of R.
If B refers to the class S, and X is Lfn(R) ULfn(S) —
{B, oid(8)}Lfu(R), then the followup is denoted by
followups(R) = & TI(X, ®HR, 5)).

Set operators are composed of union, intersection,
and difference. All of them are related with the uni-
versal objects and include the comparison and set
membership based on object identifier. And, they are
object-preserving operators. In two classes R; and R,
union, intersection, and difference are denoted by U
(Ri, R)=ar{tItERVIER:}, N(R;, RI=ualtlt
CR;ALtER;Y, and —(Ri, R)=ur{ttERIALE Ra},
respectively.

Although these operators itself can be applied to
the higher order attribute function names repeatedly
in other aggregation hierarchy of complex objects, the
nest and unnest operators are still necessary to recon-
struct the resulting objects of queries. The mnest is o
reconstruct a new single tuple class by means of the

nested relationship which the attribute of a class

refers lo the attributes of other classes. The nest is
denoted by nest(A:, A,, ..., A-— B, R). The unnest is
to reconstruct the tuple object by means of eliminat-
ing the attribute of another class which is referenced
by object identifiers. The unnest is denoted by unnest
(A—R).

4. A translation of an object calculus
into an object algebra

In this section, the proposed algorithm is discussed.
The proposed algorithm translates an object calculus
into an object algebra and its algebra operator graph
for the procedural query processing. Therefore, the
entire stages of the translation algorithm are de-
scribed with an example.

4.1 Algebra transiation algorithm

The algebra translation algorithm analyzes a prenex
normal form of calculus, and it translates a calculus
into the corresponding algebra and then it generates
an object algebra expression as a whole. For the ef-
ficient representation and evaluation strategies, the al-
gorithm represents to translate the object algebra ex-
pression into an object algebra graph. The concrete
stages of the algorithm are expressed as follows. First,
range-scparable WFFs are applied to a caleulus, in
order to specify the scope of objects for each object
variable. Second, a calculus expression is converted to
cartesian product, selection, join, and projection oper-
ations according to the kinds of algebra operators
about the object variables which are associated with
an each of the range clauses.

Consider complex object variables(ovi, ovy, ...) whose
scopes are in a class composition hierarchy. The
j'th class R; is represented by unary predicate P; such
that P(ov)) is true if the object of the i’th complex ob-
ject variable is in the j'th class(i.e., ovi€ R;). The term
such as Pj(ovy) is called a range term.

Also, comparison operators are introduced for
predicates with two arguments, and they are used to

A B E 4K CHZ0) w677

form join terms. One argument of the join term is a
component of the complex object, and it is denoted
by ow[N], where N is an integer constant which
specifies the column number of the tuple including
desired attribute object. The other argument of the
Join term must be another component of the complex
object or a constant. The terms that have two com-
ponents of the complex objects are called join
predicates, and the terms that include constants are
called selection predicates.

A well-formed formula is formed the join terms
and range terms out of “A", “V" and “7" oper-
ators together with the quantifier “(Jov)” and “(V
ovi)”, where ov; is a range varable. Now let’s con-
sider the special class of a well-formed formula which
is range-separable. These are of the form '

Ui AU AO . AULAW

» where W and each Uj; are well-formed formmulas, and
they must be at least one Ui(n>>0). W may be empty.
Each Ui is a unigue range variable and consists of
range terms without quantifiers. W may contain both
join terms and range terms. If W contains quantifiers,
it must be coupled with a range term, and it takes the
forms of “(5ov)(Pi(ov)) AW)". Therefore, every com-
plex object variables in W must have its Tange given
by either U; or a quantifier.

Two other conditions are imposed on U;. First, if
the same range variable is used for two different
predicates, such as in Py(ov)) and Pi(ov,), then, of
course, the correspondin_g classes must be the same
type. Second, no U; may start with a logical negation,
although the combination of “A” and “77 is per-
missible in Uj, This means that the range must be
given explicitly.

For translating an object caleulus into an object al-
gebra expression, the stages are as follow:

Stage 1. prenex normal form of calculus

The first step converts W to a prenex normal form

678 SIRFENR(EE =FX| HIP M 32=(96.5)

with quantifiers at the front of the caleulus ex-
pression. Remember U; so that the complex object
variable ov; is arranged in ascending order, ie., Uz
refers to ovz, and Us refers to ovi, and so on. Thus,

the query takes the form of
ti Uy AU L AU, /\(Q] Qz Qq)w

, where 1, is the list of components of the complex
object required in the result of query, and the range
variable “p” is governed by range terms in the U; and
the variable “q” is governed by guantifiers Q; to Qq.

Therefore it contains only join terms.

Stage 2. cartesian product of range claunse

From the U; and Q, it forms the cartesian product
S of the set extensions which give the complex object
variable ranges. Inside each U;, replace Piovs) by the
dass R;, replace “V" by the union, “A” by the inter-
section, and “7'" by the difference. For each Q co-
upled with a range term Pi(ov;) write down the class
Ri. Thus,

PAovi) A (Pilova) V Polov)) A T(piovs) APova)
A (Y ovl(Pslov) AW)

the corresponding product of range is
$=(R(RA(RR;, (R: +RY)), (R;—R2)), R3)

Stage 3. selection operations

For each join term in W, connecting the range
terms together with Q; or U; in a class with the logical
operators “V", “A” and "7 as an appropriate
selection condition(F), they are converted to the

unary selection operator as follows:
6(F, R)

Also, in class composition hierarchy with associ-

ation relationship, conmecting the range terms toge-

ther with Q; or Ufl=<ixn) with the selection con-
dition(F), they are translated to the multiple operand

selection operator as follows:

6F(R1, {(Raz, .oy Rad)

Stage 4. join operations

At the stage 2, two classes R; and R, are joined for
satis{ying the predicate condition(F). First, if there is
the calculus of attribute function space together with
an aggregation relationship, the caleulus expression is

converted to the object-join operator as follows:

®eR;, Ry

Second, at two classes R and S in a class compo-
sition hierarchy, if there is the space together with as-
sociation relationship, the calculus expression is trans-

lated into the followup operator as follows:

follownups(r) = & TI(X, @+, 5))

Stage 5. reconstruction operations

Let R be a class. the vmmesting list is {A}. Al two
classes with an aggregation relationship, if there is the
calculus which reconstructs the attribute function
space of a class by eliminating the relationship be-
tween the two classes, the caleuius expression is con-

verted to the unnest operator as follows:

unnest(A — R)

Let R be a class, the nesting list {Ar, ..., Anl and
the new attribute function is B. At two classes with
an aggregation relationship, if there is the calculus
which reconstructs the attribute function space of a
class by connecting the relationship between two
classes, the calculus expression is translated info the

nest operator as follows.

nest(A1 R Az, ey An_“ B, R)

Stage 6. projection operation

For each quantifier Qii=1 to q), apply the projec-
tion operation to S. Let the column list for i be by,
and the corresponding class, taken from the range
term coupled with the quantifiers, be Rk. Then,

if Q=(3RIPR)AW), S:=§ discarding b,

Stage 7. the generation of object algebra expression
Project to the target list (;, thus,

$:=TI5, ty)

Stage 8. the generation of object algebra operator graph

At the query process of object-oriented databases,
the algebra operator graph represents visiblely the al-
gebra expression which is generated by stage 8. It also
is used to implement an efficient evaluation strategy.
Thus, the object algebra operator graph is necessary
not only to represent visiblely the generated algebra
expression, but also to access efficiently the object
about a query. The condition is as follows.

1)The object algebra expressions are represented by
the graph. In the graph, nodes are the algebra oper-
ators and edges are the set of objects

2) The algebra operators (6, ®s) are bound fo the
predicate of join terms. The predicates consist of
conjuncts of atoms, The element of each conjunct(A)
are referred to as several object variables.

3)The element consisting of multiple atoms of the
predicates is represented by the section of object-join
operator and followup operator, respectively, accord-
ing to the aggregation relationship and/or the associ-
ation relationship.

4) According to existence and/or nom-existence of
the aggregation relationship, two classes use the nest
operator in order to reconstruct the aggregation re-

lationship. Similarly, the unnest operator is used to

eliminate the aggregation relationship between two-

classes.

AR OIS UK CiSZ 0| i 679

4.2 Comprehensive example of the algebra

We have a comprehensive example to show the cor-
rectness of each step of the proposed algorithm. The
operators explained in section 3.2 are generated and
the object algebra graph is generated after executing
final step.

[Example 4.1] “Find the praject name, the con-
tract#, and all the documents (including title and
authors) that are contributed to the project, in which
the budget is grater than $100,000.”

The NxOQL syntax and its object calculus are ex-
pressed as follows:

SELECT d.title, d.authors, p.proj-name, pcontract#

FROM PROJECT:p, DOCUMENT:d

WHERE d.0id € p.documents AND p-budget > 100000

{tI3t, €PROJECT(p), 31, € DOCUMENT(J), Jtet,:
t:[Lin(p)] = t:[Lfn(p)] At,[Ln(d)] = to[Lfn(p)]
Ad.oid € p.documents A p,budget > 100000
t={[title, anthors, proj-name, contract#]}

Let these expressions be applied to the algebra tr-
anslation algorithm. According to the stage 1 and the
stage 2, the cartesian product that exists in the prenex
normal form and range clause is expressed as follows:

®(PROJECT,DOCUMENT) = Jt, & PROJECT(p)
A It € DOCUMENT(d)

The cartesian product of this range clause can use

the predicate condition by means of the stage 3. Thus,
the selection operator is expressed as follows:

6(budget > 100000, PROJECT)
={t{t€ PROJECT(p) A t.budget > 100000}

Here, if predicate condition F; is budget > 100000,
then the selection operator is denoted as follows:

t] =6(F| > PROJECT)

680 TIRE XSS =FA] H3H M 3=(96.5)

IF the attribute “DOCUMENT"” and the result of
selection operalion are joined in the stage 4, it is ex-

pressed as follows:
®d.oid € p.documents(t;, DOCUMENT)={ti It €L A IhE

DOCUMENT(d): t{p] = trIpl At[d] =tz[d] A d.oid

€ p.documents }

Here, F; is d.oid € p.documents. Thus, the join op-

eration is denoted as follows:
t2 = @t , DOCUMENT)

As the result of this join operator can be obtained
to the association relationship, it must be converted

to followup operator as follows:

fonowpdocumcms(tl) - (X, t?_)
Where X is Lfn(p) U Lfn(d)-d.oid.

The result of the target list is expressed as follows:

S

T(t, tz)

X

Tt t2) \

tz

Brz
t1
d]
0r
P

DOCUMENT PROJECT

(Fig. 4.1) An object algebra operator graph

S=TI{, ta)

Where t is [title, authors, proj-name, coniract#]

According to the stage 7, the algebra expression
which is generated by caleulus expression is denoted

as follows:
g =TI, TI(X, ®2(6(F;, PROJECT), DOCUMENT)))

By means of the stage 8, the algebra operator
graph, which is generated by algebra expression, is
denoted by Figure 4.1.

After all, the object calculus based on the object-
oriented query model together with the aggregations
relationship can be translated into the algebra ex-
pression defined by Lingli4], and the entire stages of
the translation algorithm have been shown in the pre-
vious example. Therefore, it has proved the equival-
ence of expressiveness as well as generating the access

plan for the efficient query optimization{15].

8. Conclusions

In this paper, we have proposed the algorithm
which translates the object calculus into the object al-
gebra expression. The method is an approach which
generates the efficient access plan of queries on ob-
ject-oriented query models. Also the caleulus and the
algebra are specified, which are based on the query
model, for the formal query processing of object-
oriented database. The object calculus has a property
of the aggregation inheritance for the declarative
query processing.

The translation algorithm is summarized as follows.
First, in order to guarantee the closure property of
query operations, the prenex normal form is analyzed
initially. Second, the prenex normal form is translated
into object algebra operations. Third, the object al-
gebra expression and its operators are generated.
Finally, an object algebra operator graph is generated
after executing the last step.

As a result, it has not only proved the equivalency
of expressiveness, bul gencrated the access plan for
the efficient optimization of queries.

The proposed translation algotithm can be applied
to the conventional object-oriented database systems
for a new object-oriented query processing system.
The development of new object algebra operators and
applications to the conventional systems will be stud-

ied for future work.
REFERENCES

[1] Kim, W. and Lochovsky, F.H., ed., Object-Ori-
ented Concepts, Databases, and Applications,
Addison Wesley, Reading, MA, 1989.

[2] Shaw, G. and Zdonik. S., “An Object-Oriented
Query Algebra,” in Proc. DBPL, at Salisham
Lodge, Oregon, 1989.

{3] Deux, O., “The Story of 02,” IEEE TKDE, Mar.
1990, pp.91-108.

[4] Abiteboul, 8. and Hull, R., “IFQ:A Formal Sem-
antic Database Model,” in Proc. ACM PODS,
1984, pp.119-132.

[5] Bancilhon, F. and Khoshafian, S., “A Calculus
for Complex Objects,” In Proc. PODS, 1986, pp.
53-59.

[6] Codd, E. F., “A Database Sublanguage Founded
on the Relational Calculus,” in Proc. of the
ACM-SIGFIDET Workshop, Data Description,
Access, and Control, at San Diego, Calif., Nov.
1971, pp.35-68.

[7] Roth, M. A,, Korth, H. F., and Silberschatz, A.,
“Extended Algebra and Calculus for non-INF
Relational databases,” ACM TODS, Vol.13, No.
4, 1988, pp.389417.

[8] Osborn, S. L., “The Role of Polymorphism in
Schema Evolution in an Object-Oriented Data-
base,” IEEE TKDE, Sep. 1989, pp.310-317.

[9] Elore, P., Shaw, G.M., and Zdonic, §. B., “The

ENCORE Object-Oriented Data Model,” Techni-

cal Report, Brown Univ., Nov. 1989.

24K SHAIS WMl TH=2 0] WiE 681

[10] Straube, D., “Queries and Query Processing in
Object-Oriented Database Systems,” Ph.D Thesis,
the Univ. of Albert at Edmonton, 1991.

[11] Kim, W., “A Model of Queries for Object Ori-
ented Database,” in Proc. VLDB, 1989, pp.
423-432.

[12] Lee, H.R, “A Logical Optimization of Queries in
Object Oriented Database System,” Ph.D Thesis,
Chonbuk National Univ., Aug. 1994.

[13] Cardelli, L. and Wegner, P., “On Understanding
Types, Data Abstraction, and Polymorphism,”
ACM Computing Survey, Vol.17, No.4, Dec.
1985, pp.471-522.

(14] Ling, L, “A Recursive Object Algebra Based on
Aggregation for Manipulating Complex Objects,”
North-Holland, Data & Knowledge Enginceriné,
Vol.11, 1993, pp.21-60.

{15] Demuth, B., Geppert, A., and Gorchs, T., “Al-
gebraic Query Oplimization in the CoOMS Struc-
turally Object-Oriented Database System,” Query
Processing for Advanced Database Systems, Ed.
Freytag, J. C, et al., MORGAN KAUFMANN
PUBLISHERS, 1994, pp.121-142.

of & =

19843 AFoga Hr71F et
E4(3AD

1986\ AEdige gzt A
AL AF(FEHAD

19943 AGdste digy A
A543 AZEFY
ukAp)

1943~FA FENGE AFEHASAPLE A79

Tl ok AAZ G o], AR F do|ehuo] 2, A
247

682 SREEMCIER =EX M3T M 35(9%.5)

19714
1973

19783

19813 ~

% = A
Andig= FAEAD

Argam dstd A

Az AFEFEHAD
AEg g ofid A
A28 AFE-EEAD
1982 Univ. of Texas
A=

1992:3~1995d M B ER M4

197839~ A ABgga FFHFEH 2T

A Bob: g4 d, HDTV, Hge4, dFA %, 2
gojt]el © AAA G A 2F

F 2 =
19764 A ANER
FAEAD
19800 dA e A4y Ed
AR FT(FEHAD
1988 QA daw WEg A
AR Z(F Al
1976\ ~1986d &2+ A9
A AGAROTCHER), FFAAFAETLEE
9, LS EAY A4GHEag) 5
19893 ~1991%d Univ. of Arizona 9-7¢
19863 ~@A ZHustn JIFEHASHN 2rd A
FeiFegd 47
A B AZHA Y "ol e o] 2, AF-7F o] eby]
o]~ DBMS 2 08, A ¥ AHud]x
A 2d

