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The Design of Optimum Hierarchical Subband Filter Bank
Kyusik Park' - Jaehyun Park '

ABSTRACT

Hierarchical subband codec has been widely promoted in the field of data compression/decompression because
of their simplicity and modular nature. Over the past years, the study has received great aitention to the perfect
reconstruction(PR) system which perfectly recovers the original input signal at the reconstructed output. How-
ever, in the actual subband codec system, the signals that passed through the analysis filter bank are quantized
before transmission to the receiver side and reconstructed by the synthesis filter bank. Thus the PR system is im-
possible and the quantization effects must be carefully considered in the system design such that the system
recovers the reconstructed output as close as possible to the the original input signal with minimum qﬁantiz.ation
€rTor.

In this paper, we propose an optimum hierarchical subband codec structure in the presence of quantizer. The
optimality criteria of the codec is given to the design of the hicrarchical analysis/synthesis subband filter bank
and the quantizer that minimize the output mean square error due to the quantizer in the codec. Specific opti-
mum design examples are shown with level-1, level-2 hierarchical orthonormal structure. The optimal designs are

verified by computer simulation.
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1. Introduction

Digital data compression techniques such as trans-
form coding and subband coding rely on the proper
design of analysis/synthesis filler bank and the quant-
izer to reduce the number of bits allocated to each
data sample. In the absence of coding errors such as
quantization and channel noise, the topics related to
the subband codec that achieves perfect reconstrurc-
tion(PR) have been studied widely[1][2][3]. Especially,
the hierarchical subband structure based on two-band
split in frequency bands has received great. attention
for its simplicity and modular nature. Smith and
Barnwell[4] have shown thal a hierarchical subband
codec, as in figure 1 is in perfect reconstruction such
as X(n) = y(n) within some delay if the progenitor two-
band analysis-synthesis structure is PR with {Ho(2),
H(2):Go(2), G1(2)} satisfying perfect reconstruction
condition.

Consequently, this structure can be iterated many
times(levels) as we want with the assurance that PR is
attained in the absence of all error sources.

However, in the actual system, the signal is quant-
ized before the transmission as in the figure 1. Thus
the quantization effects should be carefully considered
in the design.

In this paper, the encoding quantization effects in
I-level hierarchical subband system has been con-

sidered. We will first transform the given hierarchical

z(n)

~——— analysis stage

®
§
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subband structure into a equivalent parallel structure
by using the noble identity[l]. Then we expand the
polyphase concept into the equivalent structure to ex-
tract the explicit formula for the mean square quant-
ization error due to the quantizer. Then the minimiz-
ation of this mean square error(MSE) provides the
optimum designs;the analysis/synthesis filter bank
and the quantizer. In other words, we selecl optimum
filter banks and the quantizers that is strong to the
quantization noise among all sets of possible PR filter
banks. Specific design examples are shown with level-
1, level-2 hierarchical orthonormal subband structure

and they are verified by simulation.
2. Preliminary .

The Lloyd-Max quantizer|5] is a nopuniform qu-
antizer which tailors the step-size of the quanlizer to
the pdf of the input signal. It uses small step sizes for
more probable input values at the expense of larger
step sizes for the less probable ones. Figure 2.(a) shows
the block diagram representation of the pdf-optimized
quantizer where v is the signal to be quantized, ¥ is
the quantized output, and the ¢ is the quantization
erTor,

For the pdf-optimized quantizer, it can be shown
that the quantization error is unbiased, and that the

error is orthogonal to the quantized output

®
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synthesis stage

(Fig. 1) Multi-level hierarchical subband filter bank
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(Fig. 2) (a) Pdf-optimized quantizer, {b) gain-plus-additive noise model.

E[#]=0, E[pv]=0 (1
However the quantization error 7 is correlated with
the input v. Figure 2.(b) shows an equivalent gain-
plus-additive noisc model for the pdf-optimized qu-
antizer[6]. By introducing the nonlincar gain « to the
quantizer model, we force the fictitious random error
rather than the actual quantization error # to be un-
correlated with the input signal v such that E=[»v]
=0 and
a=1—a;%0,%, 0, =l ~a) o, =ac;’ @
From the rate distortion theory[7], the quantization
error variance o- of the pdf-optimized quantizer is

given by
a2 =B(R)2 ¥ 0,?, (€)]

where B(R) depends on the pdf of the input signal
v and R, the number of bits used in the quantizer.
Earlier approaches treated S(R) simply as a constant
£=2.7[6]. But, in this paper, we actually determine
the value of A(R) with 20,000 samples of AR(1) gaus-
sian input signal with different input correlation p
and different number of bits assigned to the Llyod-
Max quantizer. It is shown in figure 3.

Let us assume that the multi-level hierarchicat sub-
band structure, in figure 1, has L-stage. Then we can
easily transform level-L. hierarchical subband struc-
ture into M =2 band parallel strueture in figure 4 by
using the noble identity(1]. Therefore figure 1 and fig-

ure 4 are equivalent if

Uiz) = Ha.(z) Ha.(zz) Ha,(z4) b HﬂL-l(zM)
Wi2) = Gol2) Gs{2) Gs(2"*) -+ Gs,.(2") @

(Fig- 3) A(R) va. R for AR(1) gaussian input source

where % is decimal number representation of binary
such that
Fho=(a a1 &z - ar—1)2, k=0,1,2, -, M—1

Now each pdf-optimized quantizer, in the parallel
equivalent M =2 band parallel structure in figure 4,
can be represented by figure 2(b). Then using the
polyphase decomposition technique, we can express
each analysis/synthesis filters Ux(z), Wi(2) in terms of
M polyphase components{§]

M-

M—-1
Ud2)= T Ui(zM), Wie)=2 M D"Wy 1)
=0

I=0

Then we can represent the analysis filter bank in ter-



ms of the M XM polyphase matrix {U,(2)=[Ur(2)];
k,[=0, 1, «, M—1} where Uy, ; is the {th polyphase
components of the kth corresponding analysis filters
of the equivalent siructure. For the synthesis filter
bank, we define a polyphase matrix W ,"(2) 2 JW; (2)

in the same manner where J is the counter identity

matrix{9].

zar—1{n)  war-g{n)

(Fig. 4) M -band parallel equivalent structure to figure 1

Then we replace the bank of filters by its polyphase
equivalent and shift the samplers to the left and right
of each polyphase matrix by using the noble identity.
We then finally end up figure 5, the polyphase equi-
valent structure. Figure 6 is only a vector-matrix rep-
resentation of figure 5 and it represents the time-in-
variant path from () to 5(») between the downsam-
pler and upsampler after the polyphase decompo-
sition.

To
s(n) £ () wi) | min
&g }-‘l’
—1
I" E ifl(") wn(n) m{n —
1 = & i1 M.Z

Ly{2) W,’,(z)

= 1 v(n)
M1 (";

(Fig. 5) Polyphase decomposed structure of figure 4

-

e X

-1 m—1(n)

=77
Ear—a(n]

(n)

£ —] s (HEL 4 ~é— Wila) — o)

_ (Fig. 8) Vector-matrix representation of figure §
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For this structure,
é(n)=[§o(n), Ei(n), -, éM—I(n)]T.

and 2(n), r{n), y(») are similarly defined. In our model,
the signals

y(n) = [we(z), vi(7), -, Var—1(W)]7,
rm)=lrdn), (), -, ru_ 1"

are uncorrelated by construction, and A is a diagonal

matrix,
A=diaglay, a1, -, ar—t]

where vd#), 7:#), a; is the subband signal, fictitious
noise and the nonlinear gain for the ith channel. U,(z)
and W,'(2) are polyphase matrices as defined earlier.

3. Quantization Effects in Hiearchical Or-
thonormal Structure

From figure 6, the quantized output is
1@ =W (2) AU(2) E(2) +W 5" (2) R(2) _ ' )
In the absence of the quantizer, the system output is
12 =W, (2)U2) &(2) (6)
Then we can define the quantization error at the sys-

tem output as a difference between Eq.(5) and Eq.(6)
such that

142)=1n(2) —n.(2)
=W, (D [A—I1UA2) &=) + W, '(2) R(2) 0]

where I is the M X M identity matrix.
To make notational simphfication, we define M XM
matrix B

B2 A—I=diaglay—1, a;—1, -, ap-1—1]
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and vector V(2)=U.(2) &(2). Since p(n) and r(x) are
uncerrelated from the quantization model, the output

PSD and covariance matrices of 7,(z) can be derived

Sy.(0) =Wy’ BSul2) BWy' @) + W, (2~ Sp(2) Wy (2))T
Ryn B =W, 1 B% Rall) BW, )T + W, i Rp(R) % (Wi, )
®)

where Sw(2), S,(2) are PSD matrices of subband vec-
tor v(#) and random error vector 7(#), respectively.
Futhermore, at k=0, Eq.(8) becomes
Ry f0) =L 2 {W; ;B Ry(i —k) BW

i ok

+W; ; R (G —R) Wpa} ®

Then we can demonstrate Ry, 4, (0) is the covariance of

the Mth block of output quantization error vector

!Zz_'(n) = [ﬂﬂn(n)s ﬂq.(n), Tty ﬂlI;t-n(n) ]
=[yMn), v (Mn-H), -, y{Mn+M—1)] (10

such that

Rﬂ'ﬂ' Io] =
Ry.y.(M n, M)
Ry, (Mn+1, Mn)

Ry,5(Mn, Mn +M—1)
Ry (Mn +1, Mn +M—1)

Ry (Mn+M =1, Mn) ~ RyyMn+M—1, Mn+M~-1)

MXM
where Ry, y(Mn-tk, Mn +7)=E[ y(Mn +E) y,(Mn +75)]
fork, 7=0,1, ---, M—1 and y,(n) 2 y(2) —yo(2). Here
#(n) is the quantized system output from figure 8 and
yo(7) is output of the system without quantization.
We note that this is cyclostationary. Thus we take
the MS quantization error as the average of the diag-

onal elements of Ry,y, [0] such that
1
oy & Elyin)]= A Trace| Ry, (0)] (11)

If we now impose orthonomality conditions on the

set of protolype analysis filters { Ho(z), Hi(2)} of fig-
ure 1., then the impulse responses J(7), #(7) must

satisiy[10]
¥ h(k) h(2n +k) =58;-98(G2) for 7,5=0, 1 (12)
k

and also for the synthesis filters. This in turn implies
that the set of analysis/synthesis filters {Uz), Wi(2)},
i=0, 1, -, M—1 in the equivalent parallel structure
in figure 4 are also orthonormal. In the time domain,

this condition is given to

3 k) uldn +k) = 54—y 8(m) for 7, s=0,1, -, M—1
t

(13)
where {2(n), wi(7):i=0, 1, 2, ---, M—1} are
uf(n) = ho(n) % Ba(nf2) % - % Rg, (n]25)
win) = g (1) * gs(nf2) % - * gy, (n)25) (14)

where * represents the convolution operation and 7 is
the decimal representation of the corresponding bi-
nary sequence as defined earlier.

If we now take the conditions in equation (13), (14)
into (11), then with some manipulation we can show

that the total mean square(MS) quantization error

w-Pol T a2 (9
Vi M n

i=0

1 M
wi=ar L

In equation (15), 0,2 and o, are the variances of fic-
titious random noise and the subband signal for ith

channel respectively, and they are given as

2.
Un =y —ﬂ"/g 2 'aw ?

oot=3 T ulQu{) Rk —1) (16)

Thus far, we have formulated the output MSE in
terms of the analysis filter coefficients {z:(z), =0, 1,
2, ---, M—1} of the equivalent structure of figure 4.,

input autocorrelation function Re(#7), nonlinear qu-



_ anlizer gain a; and the bits allocated to each quant-
- izer R;.

For those of the equations (14), (15), (16), our de-
sign problem is now to find optimum analysis/syn-
thesis filter bank #(»), win) fori=0, 1, 2, ---, M—1,
and optimum bits R; allocated to quantizer Q; that
minimize the output MSE in equation (15).

4. Optimum Design Examples for Level-1,
Level-2 Structure

In this section, we have developed specific optimum
design examples for the Level-1, Level-2 hierarchical
subband structure with prototype 2-channel 6 tap
orthonormat filter { H(2);Gd2), =0, 1}.

We note that the given hierarchical structure is first
transformed to the corresponding equivalent struc-
ture. Then our optimum design problem is to find the
optimum PR analysis/synthesis filter bank #{), w;
(n) and the bit allocation R; assigned to quantizer
that minimizes the output MSE Eq.(16) for a given
total bit allocation. We assume that the quantizer
takes only integer bits and the high frequency
components of the subband signal gets at least 1 bit,
Otherwise there is no way to recover high frequency
component of input signal at the output.

.Qur optimization algorithm test for all the possible
bit combinations for the given average bit rate R bits/
sample, calculates the optimal filter coefficients, and
MSE. Then we choose one with minimum MSE
among them. This is implemented by using IMSL
FORTRAN Library DNCONF.

The analytical results were confirmed by simulation
using 20,000 samples of AR(1) gaussian input. The

AR(1) signal with correlation p was generated from
()= px(n—1) +&,(n)

where ng(») is zero mean, white gaussian sequence
génerated from IMSL subroutine GGNML.
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4.1 level -1 Hierarchical subband structure
For level-1 structure, we have nothing but a two-

band parallel structure as in figure-7.

Ug(=) (|2 12} Wa(2)

Ui() Wi(z)

(Fig- 7) Level-1, two-band parallel equivalent structure

For this case, we have only a two sets of analysis/
synthesis filters

wi(n) =hin), win)=gin) for i=0,1 ‘.
and the resulting output MSE is

Ty,

"

1 N
2=7 Z (t.'k‘i—l)zt‘.f\r,2 +"2— Z Gr,2 (17)

i=0 im0
Thus our optimization problem is to minimize Eq.(17)
1
subject to 3 Ri=2R where { R;;7=0, 1} is the bit al-
i}

location for the ith channel and R is the average bit
rate in bits/sample for the 2-chanmel filter bank.

The analysis and simulation results for Level-1 hi-
erarchical structure are shown in Table 1 for the in-
put correlation p=0.95, 0.75. Table 1 lists the opti-
mum integer bits allocated to each channel Ro, R,
the theoretical calculations of the output MSE based
on Eq.(17), MSE, and the simulation results, MSEen.

As seen from the tables, the optimal filter coefficienls
are quite insensitive to changes in average bit rate R
although the output MSE is highly dependent on
them. We note the difference between Table 1(a) and
Table 1(b) in optimal bit allocation for the given av-
erage bit rate R. For the same average bit rale R=2.
5, the optimum bits allocated to each channels are Ry
=4, Ri=1 for input correlation p=10.95, while they
are Ry=3, Ri=2 for p=0.75. The reason for the dif-
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{Table 1) Optimum designs for Level-1 hierarchical struc-

ture

R Rao Ry MSE MSEim
1 1 1 0.35329 0.35128
1.5 2 1 0.11822 0.11831
2 3 1 0.03874 0.03913
2.5 4 1 0.01536 0.01536
3 5 1 0.00858 0.00874

(@) p=095
R Rao R MSE MSEgm
1 i 1 0.36355 0.36134
1.5 2 1 0.14066 0.13881
2 3 1 0.06612 0.06606
2.5 3 2 0.04219 0.04263
3* 4 4 0.02014 0.02046

Lp=0.75

ferent bit allocation is that AR(1) input with p=0.75
has more energy at the higher frequencies than the
one with p=095. The magnitude responses corre-
sponding to Table 1 are shown in figure 8 for the

given average bit rate R= 3.

1.5

e

(a) p=0.95

0 S T T
0.0 0.1 0.2 0.3 0.4 0.5

Normalized Frequency

1.5 e
[Go(e)] T T

- (b) p =075

e e r
00 01 02 03

Normalized Frequency

T
0.4 0.5

{Fig. 8) Magnitude response for Level-1 structure for R
) =3 bits/sample

4.2 Level-2 Hierarchical subband structure
For level-2 structure, we have a four-band parallel

equivalent structure as in figure 9.

(Fig. 9) Level-2, four-band parallel equivalent structure

In this case, we have four sets of analysis/synthesis
filters

U2 = Ho@) W&
Us(z) = Hi(2) H\(zY) (13)

Uo(z) = Holz) Ho(2?)
Uz) = Hi(z) Ho(2%)

and similarly define for W{2) for i=0, 1, 2, 3. We
note that the length of analysis/synthesis filters i),
wd#n) is now 16-tap since the profotype filters are
6-tap. And the output MSE is

3 1 3

DRCEV ol + Y ol 19)

1
0'5.2'__? . =

Now our optimization problem is to minimize Eq.(19)
subject to the average bit rate R in bits/sample for
the 4-channel filter bank.

The optimal designs for the level-2 hierarchical or-
thonormal subband filter banks are shown in Table 2
for the case of p=0.95, 0.75. As seen from the table,
the bits allocated to Rs is greater than and equal to
Rs, because in the parallel equivalent structure of fig-
ure 4., the analysis filter U2(2) actually plays a role of
high pass filter while U/3(2) as a bandpass filter.

We again note the difference between Table 2(a)
and (b) in optimal bit allocations for the given aver-
age bit rate R=2. This can be explained in the same
manner as in level-1 structure. The magnitude re-
sponse of the designed filters for U«2), i=0, 1, 2, 3
when the input correlation is p=0.95, 0.75 and R=3



{Table 2> Optimum designs for level-2 hierarchical struc-

ture
R Re Ry Ry R: MSE MSEin
1 1 1 1 1 0.35325 0.35124
1.5 3 I 1 1 0.04660 0.04573
2 5 1 1 1 0.01721 0.01683
2.5 4 1 1 0.00878 0.00881
3 5 2 1 2 0.00509 0.00512
(a) p=0.95
R Ro Ri R: Ri MSE MSEin
1 1 1 1 1 0.36156 0.36231
1.5 3 1 1 1 0.10756 0.11783
vl 4 2 1 1 0.05749 0.05651
2.5 5 2 1 2 0.03749 0.03812
3 6 3 1 2 0.02568 0.02552
b)p=0.75
2.0
Wale) \¢* o/ 1Us(ei)]
1.5 H K
14 .
) () p=10.95
0 T T T —
0.0 01 0.2 0.3 0.4 0.5
Normalized Frequency
2.0
L W) N ) U] 5/ Vsl

y

Normalized Frequency

(Fig. 10) Magnitude response for Level-2 structure for R
=3 bits/sample
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bit/sample arec shown in figure 10, respectively. From
the figures, we clcarly see the effect of input corre-
lation change in magnitude respdnses. As the input
correlation p decrease, the slop band ripples of each
filter and spillover from one band to another are gel-
ting larger. Consequently, more aliasing is inlroduced
between the channels which yields larger MSE at the
output. Finally, figure 11 shows the MSE cbmparison
between level-1 and level-2 hierarchical orthonormal
subband structure. As seen from the figure, level-2
structure provides less mean square quantization er-
ror than that of level-1 structure.

This will be true as long as the level of structure is
increased. However, as we see from the figure 8 and
10, the stopband ripple in the designed subband filters
15 getting larger as the level increased. Thus increasing

the level of the structure is not always desirable.

0.4
g Lavel-1, p = 0.85
% — Levell, p=0.75
0379 "% -0 Level2, p=085
) a.-a Level 2, p = 0.75
M
S 0.24
E ",
-..‘_“‘
0.1 - o
b
8.
0.0

(Fig. 11) Simulated MSE comparison between level-1 and
level-2 structure

5. Conclusion

In this paper, we have established an explicit meth-
odology to have mean square quantization error at
the system output by formulas derived for the hier-
archical subband codec. At first, we demonstrated
that the given L-level hierarchical subband structure
can be realized with equivalent parallel structure that
have M =2! channels. We then derived the output
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MSE expression base on the parallel equivalent struc-
ture by using the gain-plus-additive noise model for
the quantizer and the polyphase decomposition tech-
nique for the analysis/synthesis filter bank. The min-
imization of this MSE was then used as a optimality
criteria for the design of filter banks, and the bils
allocated to quantizer for the hierarchical subband
structure.

Optimum design examples for the level-1 and level-2
hierarchical structure are developed with orthonormal
filter bank. For ine designed subband codec, il was
clear to see the dependency of the magnilude response
of the subband filter on the input signal correlation.
As lhe input correlation decrease, the stopband rip-
ples are getting larger and more MSE is presented.
Also, the nature of optimum bit allocation base upon
the energy distribution of the input signal was clearly
observed from our simulation results. We note that
the maximum allocation of the available bits to the
first channel(where the most energy of the signal re-
sides) was not the optimum solution for the level-2 hi-
erarchical subband structure as it was in the simple
level-1 structure. Finally, we observed that the mcan
square quantization e¢rror is decreased as the level of
the hierarchical structure is increased. However, as
the level of the structure is increased, the stopband
ripple in the designed subband filter is relatively in-
creased so that increasing the level does not always
provide the optimum solution. For this reason, the
proposed design method is well qualified up to level4
(16 subbands in the equivalent parallel structure) hier-

archical structure.
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