1522 xRNSR =2 K] M3 K 655(96.11)

2 o}

¥ =T & SDLE 207 54 T2 A4sn 9457 99 T4 AT Eg e sy 874 T os)
71edt) o] 878 AU 4 AT EHo] AYE 9T Concerto} EF]E AT Eo] YEDE o] &3 LHEY
t}. Concerto= A1 AJ&¥] B FA Z2EE Pofs] §8 AXEL o] e fs5] 4AYE £2TEo]
B2 HF LZEH o AT ¢ FE AFHAA <8 7HA] ST EL ATV <P AR EL o 7HA ¥
B ¢} formalism & C819], CY, structured 73 718 R HOOD(Hierachical Object Oriented Design) H'H =
9 £4& FUTE T8 olTolALH, ¥ =N E §4 TLEF 2TE A BN oG ©F
<! SDL(System Description Language) Al (specification) A¢ 1213 #Q7) +¥z SDL P4 o] g £
H £ 7|(dynamic analysis tool) 58] 78] di&] @) A FHY 2o N 22 /5L 49
3, A4 BN T2 e HE57] 98l Inres TS EF L 48 So] 49514 &, Concertos] stolHe2E
HAUG] ST T2 R g 4EHe AvE Aol =2 YAE ¥A st JE b L vE
st ot

A study on implementation of
software development environment for SDL

Young Han Choe ' - Sung Un Kim '

ABSTRACT

This paper presents a programming environment for the edition and verification of the specification language
SDL. It is implemented in the Concerto software factory, which has been designed as a support for the develop-
ment of real size software. Concerto is 4 software factory designed for application development in the fields of
computer communication protocols or real fime system. It offers various kinds of tools to produce software,
organize this production and automate it. Concerto allows a smooth integration of various formalism such as the
C and C** languages, structured documentation, HOOD methodology(Hierarchical Object Oriented Design). In
this paper, as an important tools in the process of communication protocol software development, we describe
an jmplementations of SDL graphical editor tool and a tools for the dynamic analysis of SDL specifications. We
first describe the principles of this environment, then we illustrate its application by means of a simple example,
the Inres protocol. Moreover, we study how the hypertext mechanism of Concerto enables to create logical links
between a protocol and its associated service.

. Y
i oot

feut
o o
4y e

QR ARFUATA NQary
s ot W u g AF ot AAAL
11996 149 199, 4AlAlghe 1996 749 189

1. Introduction

It is presently well known that the progress of com-
puter technology is impeded by the gap between the
durations of hardware and software development
phases.

Whereas hardware can be obtained with reduced
cost and size as well as improved speed, the development
of software is still a slow and largely disorganized
process, very much dependent on isolated individual
efforts. The realization of software applications
becomes more and more difficult, when the size of the
application surpasses a certain level, thus obstructing
the evolution of software technologies. '

Among the solutions proposed to solve this prob-
lem, the approach presented by software engineering
environments seems the most promising. A software
engineering factory attempts to combine the methods
supported by sofiware tools with an organization
based on team work.

The methods and their associated tools aim at
improving the productivity as well as the quality of
the work of software developers, by introducing some
automatisms and procedures in the organization of
tasks.

The use of standard formal description techniques
for communication protocols contributes to this
effort. In particular, they propose rigorous formalisms
for software description with controlled maintenance
and evolution, presenting stable versions used by a
very large community of users, and which facilitate
the communication between desighers and users.

In order to illustrate these aspects of software
development, we present a software engineering
environment, Concerto [1], and an edition and verifi-
cation tool for the SDL language based on this
software factory. It must be mentioned that the SDL
environment that we will describe henceforth is an
industrial product based on an existing SDL proto-
type developed at the Centre National d'Etudes des
~ Télécommunications (CNET, France Télécom) [2).

SUZZEZ BN 2101 SOLE 9IT ATER0] MY 22 P 1523

The main features which differentiate between one
another is the graphic editor, which has been rewritlen
on the X-Window System, and the development of a
specific archivist for SDL. the most important
differences will be described in detail in the section
concerning the SDL environment. An example will
then be given, the Inres protocol [3], to illustrate the
application of this tool.

This paper is organized as follows. First of all, sec-
tion 2 gives an outline of the software environment
Concerto. Section 3 presents the SDL tool itself, then
section 4 illustrates the application of this tool on an
example, the Inres protocol. Finally, section 5 gives

the conclusions and orientations for future work.

2. An outline of the Concerto software
factory

Concerto is a software engineering factory designed
for the development of technical and real-time
applications [1]l4]. It is composed of an integration
platform suitable for receiving new tools, as well as
existing tools used in the different phases of the
software life cycle.

2.1 Architecture

Concerto attempts to bring about a high level of
integration and flexibility, by implementing the fol-
lowing elements:a general model of software tools, a
multi-archive object manager, an efficient communi-
cation mechanism between all the tools and an
exhaustive parameterized definition of tools.

A software tool can be seen as a program that
creates or modifies objects, usually in an interactive
manner. The objects manipulated by the environment
can be either produced objects (e.g. programs and
documentation), or objects representing the state of
these objects (e.g. planning, operating documents).
The general model of software tools, as specified in
Concerto, consists of a functional decomposition

which we can classify as dialogs (with the user), mem-

1624 SIEEPXEIHD] =FX 3T M 62(96.11)

ory manipulation, read/write operations (loading or
arranging created or modified objects), and specific
functions which constitute the body of the tool. To
connect the above-mentioned functions to the mem-
ory containing the cbjects, three processors are
defined :a dialog processor with all the graphic and
textual interface functions, a structure processor with
functions that manipulates the data in the memory,
and an archive processor that supplies functions for
transfers between the working memory and secondary
memory as well as the management of links between
objects. This general tool model enables faster and
less expensive development of homogeneous, indepen-
dent and portable tools in Concerto. This architecture
facilitates the realization as well as the integration of
software tools in the fictory.

Due to the diversity in the size of the objects used
in an environment and their organization, we need
different object management systems. In some cases,
we can use directly the file management sysitem
already present in the Operating System (UNIX or
VMS);but for more complex configuration, we need
a more sophisticated system such as a relational data
base or an object management system. Sometimes we
also need to incorporate a version management func-
tion into the system. Keeping in mind these varions
needs, Concerto is designed to allow the access to sev-
eral different archive system at the same time., In
order to ensure a correct infegration of these different
system and also to create links between archive
objects, the environment offers a hypertext manage-
ment link mechanism between heterogeneous archives.

For efficiency and flexibility, the tools integrated in
the Concerlo environment contain formal descriptions
allowing paramefeﬁzation. A tool includes a descrip-
tion of object construction rules, from which we can
generate the object analyzer and syntactic editors. It
also contains a description of object representation
rules in graphic or textual forms, from which we can
create the object presentor, a description of the tool’s
commands used by the Concerto command interpreter,

and finally a precise description of the help messages.
The advantages of such descriptions is that the cost
of tool development is reduced and mainfcnance/
upgrade is easier. Il also allows the construction of
generic tools such as a genenic editor that can be used
for any language present in the software factory
(ADA, D, LISP, FORTRAN..), as well as for docu-

mentation tools.

2.2 Concerto components

From a user point of view, Concerto appears as a
set of components, which can deal with any formal-
ism by means of a common interface. The Concerto
platform, which ensures that the external visibility of
all tools be uniform, is composed of three software
components. The ‘Dialog Processor’ provides the user
interface. The ‘Structure Processor’, also called VTP
(Virtual Tree Processor), allows the structured objects
to be handled in memory. Finally, the ‘Arefive Pro-
cessor’ manages the organization of the objects on
disks.

The generic “Editor’ tool offers a set of commands
used to handle both structured and textual objects. It
allows structural editing of any language whose gram-
mar has been, previously, formally described within
the factory. The commands that are most often used
during structural edition are ‘develop” (to develop a
complex structure) and “text edit’ (to develop a ter-
minal structure).

The generic ‘Archivist” tool handles the archive
elements containing specifications or programs. As
previously mentioned, these archive elements can be
simple Unix or VMS files, but they can be also the
structured archives such as database elements. This
tool offers a common interface to access any archive
system. In addifion, it manages the hypertext links
that can be created between different archive elements.

3. The SDL environment

In this chapfer, we first describe the SDL subset

i

E¢ ZRE3 24 20/ SOLE 98 ALE0] Y B 78 1525

used by this tool. Then we present the different
components of this environment, namely the ‘structur-
al editor’, the specific ‘archive system’ and the ‘staric

semantic checker’.

3.1 The SDL subset

The SDL tool does not use the SDL standard as
defined in the CCITT documents [5], but a subset of
this language defined by a French group of industrial
and adminstration partners. The main criteria under-
lying the definition of this subsct were the elimination
of redundancy from the Z.100 definition, the elimin-
ation of concepts that are not of a purely specifi-
cation nature, and the simplification of complex
concepts. The precise description of the SDL subset
can be found in [2] and [6].

3.2 The structural editor
The main facility offered by the Concerto software
factory is the possibility to create fextual structurgl

editors for any langnage with generic commands. In

the case of SDL, which possesses two different syn- -

tactic forms, a graphic one(SDL/GR) and a textual
one (SDL/PR), specific SDL tool, with its own menu,
was necessary to give a user interface with specific
graphic commands. We first describe the combined
use of graphic and textual editing, then we present the
main commands of the SDL tool. Finally we shall
give some comments on how to use the environment
in an efficient way, by means of the multi-windowing

capabilities of the tool.

3.2.1 A graphical and textual editor

All the commands that should have an impact on
graphic views are executed by means of the SDL tool,
while all other commands are obtained by using the
classical, generic ‘Editor’ tool. For example, if one
wishes to create a new process inside a block, ‘create
element’ command of the SDL menu will be used.
The parameters required for this command, such as
the name of the new process, will be typed in by the

user in a choice block opened by Concerto. Once the
process has been created, with the corresponding
modifications in the graphic views, it will be necessary
lo detail its own textual definitions, such as variable
declarations, timer declarations, elc. These declarations,
which are purely textual and have no impact at all on
thke graphic views, will be typed in by means of the
usual commands of the ‘Editor menu, namely ‘develop’
(to develop a complex structure) and ‘text edit’ {to
develop a lerminal structure),

Creation commands

The command which is mosl often used in the SDL
tool is undoubledly the command ‘create element’.
Indeed, this command allows to create a new element,
at a given position in the SDL specification. Note
that we deal with logical positions, and not graphical
positions. For example, we can create a process after
a given existing process, but graphical coordinates in
the graphic views are taken into account automati-
cally by the editor. One can create an element in,
before or after any existing element. The feasibility of
the creation at the given position is then tested, and
the user is asked for the parameters mnecessary to
characterize the required ¢lement. In particular, if sev-
eral different types are possible at a given position, he
will have to choose one of them. For example, inside
a system, one can create either a terminal block, a
block substructure or a block reference. All parameters
typed in by the user are then checked lexically accord-
ing to the SDL standard before the element is actu-
ally created. Hence, the editor enables creations only
if they are correct lexically and syntactically.

There also exists an altemative' to the former com-
mand, which is the command ‘create branch’. This
command allows to create a new branch, at a given
position is the SDL specification, This branch can be
either a stimulus branch(input, enabling condition or
save, after a state) or a decision branch(answer
branch or else branch, after a decision). Once again,
we deal with logical positions, not with graphical

ones. One can create a branch in, before or after an

1526 S=BEMLIEE =EX H3H X 632(96.11)

elemenl or a branch, insofar as the SDL syntax is
respected.

As for commumication between several SDL entities,
one should use the command “create link’. This com-
mand allows to create a link, i.e. a channel or a sig-
nal-route, between two entitics. The link may be
unidirectional or bidirectional. The graphic position
of the link is automatically computed by the editor,
without any manual intervention of the user.

A particular command is used to create SDL
connections. The command ‘connect” allows to create
a connection between one channel external to a given
block, and one or several sublinks(channels or
signal-routes) internal to that block. For ease of use,
external channels appear in the periphery of the block
in graphic views, so that the user can select in the
same window both the external channel and the
internal sub-links.

Finally, the command ‘create model” has been
added to the SDL menu in order to allow the user to
create a new, empty SDL specification.

Destruction commands

Most of the time, destructions of SDL entities in a
SDL specification are obtained by unse of the command
‘delete’. This command allows to delete one or severai
elements or branches, if this is permitted by the syntax.
Some elements cannot be deleted, such as the start
element of a process which is compulsory. Remember
that the commands of the SDL tool can be used only

for actions which have some impact on graphic views.

Consequently, if one wishes to delete a purely textual
element of information, such as a variable declar
ation, he will have to use the ‘delete’ command of the
‘Editor’ tool, not the ‘delete’ command of the SDL
tool.

As for the command ‘disconnect’, it allows to delete
a connection between one channel external to a given
block, and one sub-link(channel or signal-route)
internal to that block.

Modification commands

The command ‘modify’ allows to modify one

clement or branch. The former parameters character-
istic of the element(type, name...) are presented to the
user in a choice block. He can then type in the new
parameters required, or even change the type of the
element. The validity of each modification is, of
course, checked according to the lexical and syntactic
rules of the language.

Another command, ‘reverse’, is used in very special
cases. It allows to reverse the direction of the grapl-ﬁc
symbols for input an output elements. This has no
influence at all on textual views, but in some cases it
seems more convenient to reverse the graphic symbols.

Myving commands

When one wishes to move any element of a SDL
specification, the user can choose between one of the
following commands: ‘insers’, ‘move’, and ‘exchange’.
For the first two commands, the user must indicate
the farget position for the moved object.

Other commands

The command ‘show’ allows to open a new, graphic
or textual, view centered on any element of a SDL
specification. This is the key command for the sue of
the multi-windowing facilities of the environment,
Moreover, it will also be useful to open an error view,
graphic or textual, to display the errors possibly
detected by the static analyzer.

The command ‘print” allows to print an element of
a SDL specification. A special section is devoted to
printing facilities in the environment,

As for the command ‘check’, it allows to check the
static semantics of an element. This facility will also

be described in the following section.

3.2.2 Main commands of the editor

The different commands of the SDL tool, which
are presented to the user in the SDL menu, can be
classified into several classes:creation commands,
destruction commands, modification commands, moving
commands... Most of these commands are generic, in
the sense that the same command can be used to deal
with elements of different types, both in the architec-

ture or in the automation part of the specification.
Moreover, it is important to nole that the arguments
of those commands can be selected either in a graphic
or in a lextual view. Finally, each of these commands
can be vndone by means of the generic ‘undo’ com-

mand inlegrated in Concerto.

3.2.3 A multi-window editor

Omne of the main advantages of Concerto as
compared to many-other software factories is the
multi-windowing facilities that are offered. These
facilities are also present in the graphic tools. In the
SDL environment, it is possible to have any number
of graphic and textual views of the same specification,
each one centered on a specific park of the SDL
model. This facility can be used in the following way:
if you open two graphic views, one centered on a
smaller part of this siate in a larger window, then it
will be possible to work with quite a great level of
detail on the local part of the state that is currently
being modified, while still having a global view of the
whole state. Of course, one textual view (at least) will
also be necessary to type in purely textual information.

3.2.4 Printing

The SDL environment enables to print any element
of a specification in three possible ways. First, you
can print the textual description of the element, that
is 1o say the content of any textual view opened on
that element. Second, you can print the graphical
view of the element alone. Finally, you can recursively
print the graphical diagrams corresponding to the
element itself and all its hierarchy. This last solution
Is used, for example, to print a whole specification.

Note that printing algorithms are quite different if
one wishes to print a structure or an automaton
element. In the case of structure ¢lements, diagrams
are reduced in order to fall into an A4 sheet of paper.
In the case of automaton elements, the dimensions of
graphical symbols are normalized by CCITT, and
such a reduction technique cannot be applied. Hence,

SH ZZER BM A0 SOLS IS ATEQN Y 2 T 1527

truncation algorithms are used to print a single state
on several pages, and cross-reference graphical symbols
are used to link these different sheets between one

another.

3.3 Archive system

When no specific archive system exisis for a given
formalism, one simply stores the corresponding programs
into Unix files. This is of course possible for SDL
specifications. They can be stored into Unix files, or
opened from Unix files, so as to permit exchanges
with other SDL tools. Though, when one is working
inside Concerto, it is much more convenient to use
the specific SDL archive system, where specifications
are stored in an internal form. Not only does this
form occupy less space on the disk, but altogether
archiving facilities are much more practical, as we
shall show below.

3.3.1 Archive elements

Archive elements are the smallest elements of
programs that can be treated by an archivist. In the
case of SDL specifications, these elements include all
the archifecture elements up to the states included.
Thé consequence is that one will be able to open and
store directly a process or a state, without having to
open or sfore the whole specification. This is achieved
by means of the SDL catalog.

3.3.2 The SDL catalog

An archive system is mainly based on the notion of
catalog. In the case of the SDL environment, the user
specifies a certain number of SDL bases, which are
Unix path-names indicating where specifications will
be stored and manipulated in internal form. The SDL
catalog then presents the list of all specifications pres-
ent in each SDL base. These specifications will be
opened and stored just by selecting them in this
catalog view. If one wishes to open, not a whole
specification, but a smaller element of a specification,
sach as a state, another archive view than the catalog

1528 SRBEMIIES =2 X M3 H 625(96.11)

view must be used, called the observation view. This
view gives more information then the catalog view, in
the sense that il presents, for ea~h specification, the
hierarchy of blocks, processes and Ies that compose
the specification. Any archive element can then be
opened and stored just by selecting it in this observation
view. Anather facility offered by these two types of
views is to indicate, by an asterisk, the elements that

have been modified by the user since the last save.

3.53.3 Main cdﬁ;mands of the archivist

We present below the main commands that are
used for archiving purposes in the SDL environment.
It is important to note that these commands are generic.
In fact, they appear in the ‘Archivist” menu, which is
a generic tool in the Concerto software factory. The
same commands can consequently be used for any
kind of formalism.

The command ‘caralog’ is used to open the catalog

view of the specific SDL archive systern, which
presents the lisl of all the available specifications.

The command ‘observe’ enables to open an obser- -

vation view on any SDL specification.

Another command which is very often used is the
command ‘open’. It enables to open an archive
element, which can be either a whole specification or
Jjust a part of it. Note that the same command can be
used to open a SDL specification from a Unix file.

The command ‘store’ is needed to save an archive

element. The catalog and observation views are
updated according to the modifications which are
being stored on disk. Once again, the same command
can be used to slore a SDL specification into a Unix
file.

The command ‘close’ is used to close all the views

opened on the selected element, either graphic or tex-
tual. If the element has been modified since the last
save, the user will be asked whether or not to save it.

Finally, the role of the command ‘reference’ is to

implement the hypertext mechanism that we present is
detail in the next paragraph.

3.3.4 Hypertext mechanism

The hypertext mechanism is another important feature
which forms the basis of Concerto. In fact, the design
of archive systers in a generic way enables to reference,
In any structure, any archive element. Let us give two
exarnples in the case of the SDL environment, related
to the usual software life cycle. With the same generic
command, namely the command ‘reference’ of the
‘Arehivist” tool, it will be possible both

—to reference a SDL state in a paragraph of an
informal text of the Concerto’s documentation
environment, describing the specification,

—to reference a C or C** program in a SDL
state, whose behaviour can be represented by this
program after the code generation phase.

Hence, the hypertext mechanism appears as a function
essential to carry out the traceability studies necessary

throughout the life cycle of a system or a software.

3.4 Static semantic checker

This tool enables to check the static semantics of
any clement of a SDL specification. According to the
SDL standard, it implements an important number of
different types of check such as an interactive simulator,
an exhaustive semantic checker based on the a global
state-framsition graph, and a temporal logic checker
working on this graph. Moreover, a gravity level is
associated to each stafic error detected by the tool,
ranging from simple warnings to fatal errors. Once a
specification or a part of it has been checked, the cor-
responding error messages can be visualized in a user
friendly fashion. The same ‘show’ command of the
SDL tool can be used to open graphic or textual
error views on any element. In a graphic error windows,
they present only the substructures of the specifi-
cation that are erroneous, preceded by the correspond-
Ing error message and its gravity. SDL specifications
can then be corrected directly in these views. Finally,
these exist a mechanism to mark the errors that are
cousidered by the user as probably corrected, before
the next semantic check is performed.

4, Application of the SDL environment
to the Inres protocol

We have used the SDL environment for the specifi-
cation and the verification of both the Inres protocol
and the associated service. This protocol does not
correspond to any international standard, but it
presenls many software aspects specific to communi-
cation protocols. This is the reason why we have
decided to apply our tools on this systern. We first
describe briefly the Inres protocol, then we present
our work with the SDL environment. Finally, we
shall show how we have used the hypertext mechanism
of Concerto, in order to eslablish dynamic links
between the protocol and the associated service.

4.1 The Inres protocol
Though it does not correspond to any real network,
the Iures (Initialor-Responder) protocol [3) is quite

interesting, since it presents many basic OSI concepts .
and mechanisms, such as connection, disconnection,
sequence numbers, acknowledgements and retransmission’ -
on time-out. It is in fact a simplified version of the . a

Abracadabra protocol described‘in [7]. We first give

an informal description of the protocol and its -
associated service, then we shall present the SDL -

specification of the protocol and its associated sennce,
then we shall present the SDL specification of the
Inres service and its analysis by means of the SDL

environment.

4.1.1 Service outline

The Inres protocol is connmection oriented and
asymmetric. Hence we represent the communication
between an initiator entity, which establishes the
connections and sends data, and a responder entity,
which both accepts and releases connections, and
receives data.

Before any data exchange between the two entities
is accomplished, a connection muse be established
through the classical exchange of four service primitives,

HEEEE SN UOISDLE it 2T SR04 7 82 751 1500

denoted ICONreq (Inres connection request), ICONind
(INres conneclion indication), ICONresp(Inres con-
neclion response) and ICONconf(Inres conneclion
confirmation). Once the connection has been success-
fully established, the initiator entity can transmit data
by means of the IDATreq(Inres data request) service
primitive, which will be delivered at the responder
entity as IDATind(Inres data indication). After com-
pletion of the data transmission, the connection will
be terminated by the responder, which issues ID1Sreq
(Inres disconnection request), delivered at the initiator
as IDISind(Inres disconnection indication). A number
oproblems may arise, such as rejection of a connection
request by the responder, or erroneous transmission
of the various data involved in the service. Most of
these problems cause a IDISind to be received by the

initiator entity,

4.1.2 Protocol outline
To achieve the reliable, connection-oriented service

described earlier, the Inres protocol uses the service

" offered by a communicat_ion medium between the two
_ entities. The service of this ‘medium is symmetrical

and unreliable, ir_n the sense that it may lose data. Let
us now describe briefly tﬁe protocol itself.

The communication between the two entities takes
place in three successive phases:connection establish-
ment, data transmission and disconnection, During
the connection establishment phase, two protocol
data units are used, namely CR (connection request)
and CClconnection confirmation). Thereafter, the data
transfer phase uses two other protocol data units:
DT(data transfer), which contains both the service
data unit itself and a (one-bit) sequence number, and
AK (acknowledgement), which contains only the sequence
number of the message it acknowledges. Here, the
concept of sequence number is analogous to that of
the control bit in the well known “alternating bit pro-
tocol: the injtiator entity which has just sent a DT
with a given sequence number wails for the corre-
sponding AK, before it is allowed to send the next

1530 SZHEME([ESE =X M3 H 6%(96.11)

DT with the next sequence number. If it receives an
AK with a wrong sequence number, it simply
retransmits the last DT. Finally, a DR(disconnection
request) protocol data unit is used during the discon-
nection phase. Throughout the Inres protocol, retra-
nsmission over time-outs are used to fake into

account data losses inherent to the medium service.

4.2 SDL specification and analysis

We have modeled the Inres protocol and service in
$SDL, by means of the graphical editor described earlier.
Both specifications have been stored in the SDL
archive syslem. We then verifled the static semantics

of both models with the SDL tool.

We shall present several screendumps, related to
the different views of the SDL system in a Coneerto
session. Thus, figure 1 shows at the same time a view
of the SDL catalog, as well as a graphic and a textual
view of the same specification. It is important to
point out that an element selected in one of the two
windows opened on the specification is highlighted in
both. Figure 2 shows that the verification of the static
semantics of the Inres service does not-detect any
error. Finally, in figure 3, we have intentionally added
several static semantics errors in our specification, so

as to show how the SDL tool displays them.

=

INRES_SERVICESTLIR] i MRS SR [e

@ Edi

File E& SOL A <

Conce camkgeeti o) copy sTa e 1)

FADCESS (58P MANAGER IRE A
0L D ISDUTTRE;
TMR T,
SYNDWYM P DURATION -
EXTERMAL;

START; NEXTSTATE CNCONNECTETD,

[=]=]1 s

130413
IPFUT ICU‘\F\EQ.
Eqs|
EIQ-EF!}UIHTFUT IR

GU'J'F’UT 103N
'\EATST?\TE OsCOMNECTED

EI\DSTATE.

STATE WAIT,
INPUT ICORE;
FESE

OUTP'L.I}[ICONCORE;
NEXTSTATE COMNECTED,
INUT T,

S eadogee

Fe Ede Caxeno
kd mu?ugmesawgmes_sdm.s_ﬂ_m
- 5
— ves =nice J—
1] €vsTEMinees servee S i
! B s 'l"s‘m MAMGER M -
— START STL e gmaion Trput ICONREG" l‘
STATE DISCORNECTED S S A i
STATE WAT
STATE CORKECTED il Fistary st
1
BOCK IS4 FESk
PROGESS T5AP MANAGER FESP fmearto
STAT DCOINECTED + 4
STATE VAT 10 delew{R1) amoution “arcHeirk” |
STATE CONNECTED 11 stoefEna) windos “TNFES .~
STATE N 1

(Fig. 1) The SDL environment of Concerto

T=2E

2 YA 20 sbLE

fIBt =T ENM Y =E P

£

oo

1531

e T S T e W e Tt T R e e

ERDNEN TYFE.
SLCOK 1SARP_ NI,

TROCESS 15A° VENAGER_IM.,

=01 O ISTUTYRE:

TNER T,

SYNORM P LURATCN - EXTE PR

STAW.PEXTS TATE DISCOMNMECTED
STATE DISCONNECTED:
INFUT C‘.DI\F!EQ
CECIEINN “a
1cm£mo'3wu7&.om

MEXTSTATE w AT,

[Ea]

zat

X
I
IR
a4

lnvnb ‘chec o lhe kg S0

g%

2

;: The pomible erroers cbtaned Juran the stan: semann:
4 werioston car be vipualed by means of e Tohow
4 |

I" b caoe of dug anal!sns 3 {he icnlczmrq

SEYSTEM INRES SE R

SR ane Mgt

ont

<hafe ekment
crate Dok
ermate link

Lo npgt

deconne <t

mgectfL4)
meow (F3)

& me b hge[LT]

2 dit textflF)
faplace strucure
replage
change sty
delete 1)
remove(R2)

£3

sou

] INRES SEFNICE[SELF‘F«] A= INRES_SERVICE[SOLIR] 2 B Fle [@ Ean 15
Citvras 1 ~ . BELEEE TILEY R & 2teuebac(M1 3 had
File Egs SOL Loveve 0| Fie 500 Canes Ot tagw @ ::: g;‘:r(; ! 4 (:.elnl»_\- 1R
= | SVETEM INBES_SERVICE, a |, : +] e = 7 talocdormabicn {FEY | cuna bl 5
J — o 1_1‘\14 S peEROnG i1 om=iFE) shewfl3] GEITETIY
—{ = i 1y reromace combowicure(FE, [rope wgR1-
By FEQ ISOUTYFE L 1COMEONFE F —— 208
N CDLLI:'N a‘mwsspl |n|s;2‘£‘:c? [t o 2) ek) 2earch ten] e gt
1 {CATINDUISDUTYRE] QAN ICONF f0iE - i €lo Num dock) b develep(l2) o e da(LT)
1 TYFE) prac] emtad 4 ure i (RS
LEW TYFE 150U TVFE bl convon © civn

-BLOCK ISAP
- FROCES S ISPF MENAGER_ I - -

JEWDCR IS AP FE
-PROCESS BaP NnusEFt FESF-.-

tustay liat

26 debere (P11 anncianon
27 delete [F1] annccatr.
28 chegh, TTL desgr scn ' ® oe—

"5 rcli

“a nchiv e

dehnten INRES_SERVICE

it s - SR = - e -
§ =1 INRES q:F*.-.n:z_[cu—F] i E -
k ! THw Eade SDL Carat ety {_Fh e [- L :
3T re O E S e M A G BRI -
4 "i‘ TL O Qe
[~ “weEr 7 _
Pl TYNOHTYM @ DURATION « Ex TV 2da, — ! .
—— .
dl——| 3TAET HExTSTATE DISCCH-IC ™S5 p crgct _-.---~. a
10 1 itarE DISEONNECTED. -
K H mP Ut ICONRE :
1 1 CECISIGH anv .
3 ! YEITHER) , oUT UTn:on :
- ; SEYfNU\III +P T ‘
| 1 HNEZTSTATE ‘\m met H
s
v =] LFE EE [DERVE SOLAR)
Hom oDae oow
by W B SIGHALIDATREQINUMbDAT 64 Lpe <733 urmand INCONEMEAT midh JecErance
:J AL (gnaﬁdatnumb't O Wwpe OTApLmer NS wrent mith A& CIAIRDON
1

HREO, ﬂATEREOACSDUT'VPE, wo: HE. ICCH D, IECONRESP “DIZEED D ISiLZ
TIHD(IEDUTYPB O, ICCHF 1D = VRTHTOUTYPE)
AtOCkizar 14 ul iemden

AT s T ATRMTEN oL hefenT 8 1% denlaratom

C?!%‘ S!uHALID»ﬂ NUMbBer 3t Wow o 212 mtn X cohe O with dectam@uon
0 &,
" A" CHANNEL ISJ-\PII‘“(tlﬂzmdth:-ci T Wty v m CONKNECT
CONNMCCT ISAMNL AND
AN DHANNEL INTEPNAL(«hkzmah 3 g acndwh x COMMECT
CCHHEDT INTEF’HAL AN 1re vEl' - |

[

ad B
l-FlSAP INI mllll h? o.aawum-

- S INFREFERENCED

] ~ i inal aprears «wngte ir 3 CONNECT
CHANMNEL lSAle

tHOM ENV 10 184 NI WIILH 1IZ0NHEL IUSTRED .,

FROM ISAP_INI TO ENV WITH "CONSTF (0SNG,
EHOC HANHEL,
AN CHANNELINT ERNAL(exh maliapcedrs wiongy in a2 CONMECT
CHANNEL INTERI

FROM ISAF_INI TO I5AP RESPF WITH -~ ONDAT.

FROM I5AR™ RESF TO ISAP_INI WITH I ONF D15
ENDEHANHNEL.

<o
e e mod
show
%t foni

drnata wlymur
ttcats brosch
o#atg hed,

£ gnnect

moark arvoe s

-

(Fig. 3) visualization of static semantics errors

1532 SIFBXIET =27] M3 M 625(96.11)

4.3 Relationships between protocol and service

The last phase of our work is the creation of links
betwzen the specifications of the Inres protocol and
the Inres service. We have used for this purpose the
hypertext mechanism present in Concerto. The reader
can observe, in figure 4, that archive links have been
created in the service specification, pointing towards
the prolocol specification. These links concern, not
only the whole specification, bul also some of their
constitutive elements, such as blocks or processes.
These hypertext links can then be used to find out the
elements of the protocol specification which implement
a given element of the service specification, and con-

verscly.

5. Conclusions

This work points out that soflware engineering fac-

torics, such as Concerlo, scem 1o be necessary
frameworks for the development of powerful edition

and verification tools. we have

In this paper,
presented an software developmeni environment for
SDL language, and illustrated its application on a
communication protocol. One of the main advantages
of this environment as compared to many other
software environments is the offered multi windowing
And also,

another important feature which forms the basis of

facilities. the hypertext mechanism is
this environment.

According to a given SDL specifications, we imple-
mented some different types of dynamic checking
such as an interactive simulator, an exhaustive seman-

tic checker based on the construction of a global state

CHANNEL 1SAP2 * ENDCHANNEL;
BLOCK INI_STATION; * _ENDBLOCK:
9LOCK MEDWM: * | ENDELOCK.
BLOCK RES_STATION:* ENDBLOCK:
ENDSYSTEM.

lmory lm

INFIES_SE RCE [OPR NFES [SOLGRY
[Fie SOU Concerto
’_j‘_ ! fee mres!s\snm_de!ninon INR ES | 4 | SYSTEM INRES b
wa s
7] ENONEWTYPE; (L= 1S 4P ICOM.. | 3
| IN_ ;
-} gec inresTeystem_denniion HS AP 2
HEES Rk o mina daflon tN) STATION | STATION ;
BLOCK (SAP_INI: L. 2
iaaaa I _
ENDELOCK; .
-l see InmeEEystem _dafindan I B [
INREQUIIJ:#‘ (nlmmarduﬁnmm RES STATION
_ - 5
s 7] INGES{SOL PR)
" 1
ENDELOCK: :ﬂe Edw S Carverto
It sYsTEM INRES:
C,H‘ANNEL ISAPINI - a"‘ T s“specﬁﬂim ir::gy blo.:’ﬁt 50192 rzcomrgqnd
| £ 3¢ the neml ik _usad in “decs
o esr [Mo SEUEEMER Blofeiiiet
NEWT HON
CHANNEL ISAFRESF ™ NEW;Y:EIFSDUT‘}'P *‘Engﬂmy&
ENDEHANNEL: gI%NAI EMSDUTYP “ ENONEWTYPE:
CHANNEL INTERNA. CHANNEL MASART * EHDCHANNEL:
ENDCHANNEL; CHANNEL ISAP1 * ENDCHANNEL:
ENDSYSTEM: CHANNEL MSAF? * ENDCHANNEL;' "ion "@ichivelnk” annowlon

Conce ko

TUSWOwW SOTT

(Fig. 4) Use of hypertext links in the SDL environment of Concerto

—
¥{ spedicafon name"

v ‘eyFRm deimiov INRES_SERVKE
I1 show SDL deﬂgn:nm “eyrem deinian IHMRES”

SU ZZEZ N 2101 sDLE QI8 2T EQ0] 74 =7 T3 1633

transition graph, and a temporal logic checker work-
ing on this graph.

Moreover, we have created several links between
different parts of the protocol and service specifications.
These links, which are based on the hypertext mech-
anism of Concerto, will be used in a future work to
facilitate the conformance verification between protocols

- and associated services[8][9].

REFERENCES

[1] CONCERTO, “l‘atelier de génie logiciel, présen-
tation générale”, Sema Group, October 1991.

{2} J. Camacho, C. Langlois and E. Paul, ELVIS, “an
integrated SDL environment”, Proceedings of the
4th SDL Forum, Lisbon, Portugal, 9-13 October
1989.

{3] D. Hogrefe, “OSI formal specification case study:
the Inres protocol and service”, Universitat Bern,
Institut fur Informatik und Angewandte Mathematik,
May 1992.

{4] A. Conchon, “Projet Concerto:le poste de travail”,
L’Echo des Recherches, N°119/120, France, 1985.

[5] SDL, “Functional and Specification Language”,
Recommendation Z. 100, CCITT, Geneva, 1989.

[6] C. Langlois, M. Martin, A. Rouger and E. Paul,
“Deéfinition du sous-ensemble LDS88 proposé par
le CNET", Note Technique NT/PAA/CLC/LSC/
2236, CNET Paris A, July 1988.

[7] “Guidelines for the application of Estelle, LOTOS
and SDL", ISO TC97/SC21, ISO Technical Report
10167, 1990.

[8] A. R. Cavalli . U. Kim and P. Maigron,
“Automated protocol conformance test generation
based on formal methods for LOTOS specifications”,
5th International Workshop on Protocol Test
Systems, Montréal, Québec, Canada, September
1992

[9] H. Fouchal, A. cavalli and Sung Un Kim “An
Integrated Tool for LOTOS development”, IEEE,
In'tl Conference on Computer and Communi-

cation, Seoul, 1995.

19813 ABdghw ARFga
(F&Ah
19923 Zgvfishg Aasta(e]
4 A
1987 ~1989%] AT&T Bell Labs.
K g libetd|
1993¥@~&A ITU-T 8G7 Q.17
Editor
1993y~1994d ETSI MTS 3¢
19828 ~AA] FFAANELNATL T2EZ 74
T4 NTBHA #<)=.
FBHEHEZZEZAY, 2IZHFEFAN, ALEN
&3 AFEUESR

3
Z 8oz

AR st FAA-FEs

(34D

Zgx FYF 7 o

& ARFEHEE

A Ah

zas I 7 o

g ArFEEd

LIDAR)

198213 ~1985d FFAAFNAF4 HeolHEgad
FHR@T)

198613 ~1995d @55 SFATLHYAT+L,
47

19903 ~1993d X FA A7 EN/SAFA(ERYF
T4)

19959~ FAdESR FREZNFHEZF)

AL ZZEE dXJold, oy FA Fax

EEZANY, AFEESNZ

