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Visualization of 4-Dimensional Scattered Data Linear Interpolation
Based on Data Dependent Tetrahedrization

Kun Lee'

ABSTRACT

The numerous applications of surface interpolation include the modeling and visualization of physical pheno-
mena. A tetrahedrization is one of pre-processing steps for 4-D surface interpolation. The quality of a piecewise
linear interpolation in 4-D space depends not only on the distribution of the data points in R2, but also on the
data values. We show that the quality of approximation can be improved by data dependent tetraheadrization
through visualization of 4-D space. This paper discusses Delaunay tetrahedrization method(sphere criterion) and
one of the data dependent tetrahedrization methods(least squares fitting criterion). This paper also discusses new
data dependent criteria : 1) gradient difference, and 2) jump in normal direction derivatives.

1. Introduction phenomenal1]{2](3][4). Earlier work in ihese fields re-

lated more to bivariate interpolation than to trivariate

The numerons applications of surface interpolation interpolation due to the complexity and difficulty of
include the modeling and visualization of physical 4-D space visualization [5].

Tn this paper, new data dependent criteria are intro-

T a 31 -?li’.‘i%-ﬂ"dﬂlt}il ATy T e aﬂz_}*}‘ duced. We visualize the 4-dimensional scattered data
EEHS:1996 49 26, AR 1996 89 2¢] interpolants based on new data dependent criteria.
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2. Previous Work

Scattered data is defined as a collection of observed
data thal have no specified relations belween data
points. Denote scattered data (x:, %, i, F), (=1, ...,
N). vi=(x;, ¥, &) is called a point. 5 is called a
value at 7, ({=1, .., N). The interpolation of Scat-
tered data in R® consists of constructing a function f
=flx, ¥ 2) such as flxi, yi, 2)=F;, ((=1. .., N),
where V={2;=(x;, 3, 2)€R3, i=1, .., N}is a set
of distinct and non-collinear data points and F=(F;,
- Fx) is a real vector corresponding to points. One
of volumetric interpolations of the scattered data.
Thus, one of main tasks is to provide feasible 3-D do-
main consisting of tetrahedra. Q is the convex hull of
letrahedra which do not intersect each other and con-
laining the sct V of scattered data. This definition is
stated in detail.

The vertices and the boundary dQ of Q arein V. A
set TH={TH:}1 of non-degenerate, open tetrahedra
is a tetrahedrization of  if the following conditions
hold :

a) V is the set of all vertices of tetrahedra in TH,

blevery edge of a tetrahedron in TH contains only
two points from V,

cJevery face of a tetrahedron in TH contains only
three points from V. Now, T is the set of all
triangles of tetrahedra in TH,

d)Q=U!_, TH;, and

e) TH; N TH; =4 +# 7).

Before data dependent triangulation was introduced,
long thin triangles were treated as “bad” triangles. In
other words, the triangles should be as equiangular as
possible, because a “majorizing” error bound contains
the factor 1/sin®f. The denominator of error factor
becomes smaller when the minimum angle of given
triangles is getting smaller[6). However, long thin tri-
angles can be “good” triangles for approximating the

function which has a preferred direction. In this case,

the long thin side of the trangles should line up in
the direction of a small curvature of function[7].

One single criterion on the triangulation is not ad-
equate for all types of data sets. It is more reasonable
for the user to select the appropriate criterion accord-
ing to the nature of data sets. We briefly review con-
cepls related to 2-dimensional data dependent tri-
angulation and 3-dimensional Delavnay tetrahedrizat-
jon In this section. Basic concepts of computatjonai

geometry can be founded in several texts(g][9).

2.1 Two-Dimensional Data Dependent Triangulation
In many cases, we assume that the underlying fun-
ctions are “smooth” related to the data sets except
special cases. Many researchers try to track this be-
havior by using “nearly C'” criteria which deal with

the common edge between two adjacent triangles(7).

2.1.1 Nearly C' Criteria

a) Angle between normals(ABN)

This criterion minimizes the angle between two nor-
mal vectors of adjacent planes. The resulting triangu-
lation is the one in which the normal vector to the
piecewise surfaces (i.e. interpolants) exhibit the least
changes in its direction when passing through the
edges of the triangulation.

b)Jump in normal derivatives(TND)
The resulting triangulation is the one in which di-
rectional derivatives are the least changed in the nor-

mal direction of a common edge.

2.1.2 Min Error Criterion

Schumaker proposed least squares fiiting method
to find interpolants such as minimizing the errors be-
tween the actual function values and the approximat-
ed values at data points. One can use a simulated an-
nealing algorithm for (globally) optimal triangulations
[10].

BA)= ¥ lzi—s(x, y)I2 @.1)

i=1
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where A is a given triengulation.

E(A) is an crror between he exacl funclion value
and approximated value, % is the number of data
points, z;= f(x;, 3) is an exact and s(x;, 3) is an
approximaled value at dala point p; by a interp-

olation function s.

2.2 Three-Dimensional Tetrahedrization

Afler Delaunay provided the algorithm for triangu-
lation of a 2-dimensional plane[11], several researchers
have gencralized the triangulation 10 # -dimensional
space, Watson presents the # -dimensional Delaunay
tessellation with application to Voronoi polytopes{12].
Edelsbrunner has presented an algorithm that con-
structs a tetrahedrization of a sel P of » points by the
incremental refinement[13].

Joe’s method presented an algorithm that can con-
struct the three-dimensional Delaunay (riangulation
using local transformations by starling with a special
triangulation. In Joe's paper, the sphere criterion is
used for 3-D Delaunay triangulation[14][15]. In other
words, no more than 4 points lie inside the circums-

phere of a tetrahedron. Sphere criterion is 2 data in-

dependent criterion to characterize 3-D Delaunay tri- .

angulation.

2.2.1 Joe's Algorithm
We express the algorithm describing the above pro-
cesses as !

if desirable then

if possible then

find case of transformation

endif

endif

2.2.2 Details of Transformable Cases

In 2-D trangulation, two triangles always trans-
form into another two trangles by swapping a diag-
onal line in a quadrlateral. In 3-D tetrahedrization,

two tetrahedra may become three tetrahedra. If de in-

tersects the interior of triangle abe, then the imitial
letrahedrization conlains the two initial tetrahedrizat-
ion contains the two lelrahedra abed and abee (see
Figure 2.1), and the lransformed telrahedra become
three tetrahedra abde, acde, and bede (see Figure 2.2).
If ac does not intersect the interior of triangle bde,
then one needs the third tetrahedron acde. Henes,

these tetrahedra may be transformable.

e

(Fig. 2.1) Horizontal transformation.
(3" 2.1) +5= vt

(Fig. 2.2) Vertical transformation.
(38 22) 3x HE
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(Fig. 23) Four transformable cases.
(O3 23) HE ST A 71X HP

There are 4 cases that are transformable. In the
first two cases, any four of the five points are not
coplanar. In the next two cases, four of five points

are co-planar (se¢ Figure 2.3.).

3. Data Dependent Tetrahedrization

We introduce several data dependent criteria of te-
trahedrization. The quality of a piecewise linear in-
terpolation in space depends not only on the distri-
bution of the data points in R3, but also on the data

values. We can improve the gquality of an approx:-
mation by using data dependent tetrahedrization. In
2-D triangulation, normal vectors are one of the char-
acteristics of the given surface. In 3-D tefrahedriz-
ation, gradient vectors more approprialely represents
the given space. Least squares fitting method leads to
feasible approximation, even if it requires the exact

values which are normally not available.

3.1 Least Squares Fitting Criterion

Schumaker discusses the least squares fitting cri-
terion for an optimal triangulation][10]. We apply least
squares fitting criterion based on each letrahedron. In
our case, input data are a set of positional data po-
ints and a known test function. In a real world appli-

cation, the exact function values may not be available.

3.1.1 L; Norm

We assume that the test function is provided for a
validity of our study. We calculate a discrete norm
between the actual function values and the approxi-
mated values at sampling points in a tetrahedron. A
subdivision process increases the number of sampling
points. The triangulation has the smallest etrors in

the sense of L; norm. An error is the difference be-
tween exact function values and approximated values
at points in the given fetrahedral domain.

1, norm of TH(V,, Vb, Vs, Vo=

n o=

\/—L )i [Fxi, 3, 20— F (i, v, 20]* (3.0

where TH(V,, Vs, Ve, Vq) is the tetrahedron that has
four vertices Vi, Vs, Ve, and Vy, # is the number of

sampling points,
F;=Flx;, ¥, #) is at approximated function value
on sampling point p;, and f;= f(x;, ¥;, 2) is at exact

function value on sampling point p;.

3.1.2 Sub-Division
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The increasing of sampling points in a tetrahedron
may improve the accuracy of calculaling a discrete
norm between the actual function value and the ap-
proximated one. We can increase sampling points by
using a subdivision process. In the second level of
subdivision, the number of sampling points is 10
poinls. The number of sampling points increases to 20
and 35 points at the third and forth subdivision, re-
speclively. We presenl sampling points of the second

level of subdivision in Figure 3.1

L)

(12,1209}

CRDAT T AR
RGN 1,'20 {12,1200
p 0 21l

) (20,120) (1:2.0.172,00 1,44.9)

(Fig. 3.1) The second level sub-division of a tetrahedron
(10 points boid fetters only).

(38! 3.1) 3t A2 2 2 MBS FS #XA2 E2|= 10
&)

3.2 Gradient Difference Criterion
Definition 1:if f:UC R*—R is differentiable, the
gradient of f at (x, ¥, z) is the vector given by
of o of

df=|2L 2 .
gad f= o Gy oz

The direction of a gradient is the fasiest direction
of change of /. The magnitude of a gradient vector is
the rate of change in that direction. We need to min-
imize the difference between each adjacent functional
surface/space (2-D/3-D cases respectively) to satisfy
the nearly C*. As an example, we will explain this con-
cept for a two-dimensional domain, criterion in sec-
tion 2.1.1 (see Figure 3.2).

Let Flx, y)=ax +by +¢ be the linear interpolaling
polynomials on a triangle. A linear function is uni-

quely defined by these values at the three vertices of a

3

VF2= (a2 b2)

\

triangle.

VF1={ual,bl)
A

X a b

B=F{x ) =ax+by-+c:

=Fx, ¥} =a:x +byy +e;:

VF, and gradient of VF, are gradient of Fy and Fz, re-
spectively ;

N is a normal vector of common edge b on 2-D domain
of convex hull abed.

(Fig. 3.2) The gradient of each adjacent surface of 3-D fun-
ctional space from 2-D domain.
(T8 32) 2 AN HHoRLE 3 XIS - Z7RA
oflA 2} I T 72| ZHA}

To achieve a smooth transition between two adjac-

ent surfaces, we minimize the difference of their gr-
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adienis, We coan apply Uhis concepl to & 3-DD domain
through an analogous method of a 2-D domazin.

Let Flx, v, 2)=ax +by +cz +d be linear inter-
pelating polynomials on a tetrahedron. A linear fune-
tion is uniquely defined by these values at the four
vertices of a tetrahedron. VF is orthogonal to the iso-
surface in 4-D space.

A gradient difference between iwo adjacent tetra-

hedra is

1G1—Gal = Vi@ —a)? +(b,—b)? Hei—c)*  (3.2)

where G is the gradient vector of a tetrahedron TH,
(V.. Vz, V3, V) in 4-D functional space (.e. (z;, &,
¢)7). Gz is the gradient vector of a tetrahedron TH,
(Vi, Va, Vi, Vo) in 4-D functional space (i.e. {2, b1,

)M

3.3 Jump in Normal Direction Derivatives Criterion

Jump in normal derivalives criterion can be expla-

ined as minimizing the difference of normal derivat-

7

Normal
Direction
Denvativeat P

v/

(Fig. 3.3) Directional derivative along the normal of a com-
mon face AV VzV;
(28 33) SE 2ol MZE vive vl B gratol o= gt
g g

ives zcross the commion cdge (i.c. edge b¢ in Figure 3.
2){7]. In our case. we minimize the difference of direc-
tional derivatives along the direction of N. N is the
normal vector of the common face.

We need lo define a directional derivative at P = (x,,
Yo. 20)T in the direction of normal vector N={(%,, ,,
7,)T which is the normal vector of common face AV,
V2V (see Figure 3.3).

Definition 2:if /:R*-+R, the directional derivative:
of f at P={x,, ¥,, %) in the direction of a unit vec-

tor N is given by
d

— HEN) f=o-
ar F(P +tN}yo

The directional derivative can also be defined by the

formula :

limit S+ - fF(P)

>
0 ¢

where f(P +tN) = alx, +n.1) +b(v, tn,t) +c(z, +n,
£) +d, and f(P) =alx,) +5(y,) +clz,) +d.

Let Dy= (a7 +biny +cim) and Dy=(an: +ban,
+27:) be the limit directional derivative at the com-
mon face of tetrahedron TH; and TH;, respectively.
A difference between two directional derivatives along

the normal vector of common face AV, Vo Vs is
D1 =Dl = oy — @) ne + (b1 —b)ny +o1—c)m:]. (3.3)
4. Implementation

In this section, GEOMPACK is introduced. We use
this package for constructing initial tetrahedrization
{i.e. Delaunay tetrahedrization). Also, a simulated an-
nealing algorithm is introduced. It is used for achiev-

ing global-like optimum.

4.1 GEOMPACK
GEOMPACK is a mathematical software package,
written in standard FORTRAN 77 for GEneration
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Of Meshes using GEOQMeiric algerithms. B. Joe pro-
vides all rouvtines including an introduction, and the
explanation of each routing{16]. We use GEOMPACK
to generate convex letrahedral domains in 3-D space
to deal with large data sets (i.e. 1000 data points).
Data dependent tetrahedrization routines are writ-
ten in the C language for small data sets (i.e. 20 and
50 data points) by author. We employ the GEOM-
PACK tc achieve the fast construction of initial te-
trahedrizalion for large data set (i.c. 1000 data points).
To implement data dependent tetrahedrization, we
modifly GEOMPACK and combine simulated anneal-
ing routines in FORTRAN 77. Visualizalion routines
are written in the C language by author. We produce
the list of tetrahedra using a DEC 3000 Alpha-AXP
and transmit them to a Silicon Graphics IRIS Crim-

son for visualization routines.

4.2 Simulated Annealing

Certain researchers have drawn an analogy between
the annealing of metals and the solution of combina-
torial optimization problems [17], finding relationship
between the molecular vibration of molecules through
many states and the simulated vibration of a stochas-
tic system through its more artificial states,

Simulated annealing is a global optimization method
that distinguishes between different local optima.
From an initial state, the algorithm takes a step and
the cost function is evaluated. With the minimum of
cost function, any downhill step is accepted, and the
process repeats from this new, down-step point. In a
similar manner an uphill step may be accepted. Thus,
the algorithm can escape from local optima. This up-
hill decision is made by comparison between a ran-
dom number and the Boltzmann probability distri-
bution shown in Equation (4.2) (metropolis criterion)
[18). As the optimization process proceeds, the num-
ber of uphill steps decreases and the state closes to a
global optimum,

We can use a simulated annealing algorithm to ap-

proximate the global optimum with many local op-

219 JLAR- X2 ZHE TEdst Al mar
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tima. In our contexl. “swap” means (o change the way
ol tetrahedrization (see section 2.2.2). In other words,
the common face of adjacent tetrahedra are trans-
formed from vertical to horizontal, or vice versa. A
good swap improves some measure of qualily;a bad
swap does not. One can reduce the probability of a
bad swap according 1o an annealing schedule. We can
determine the oceurrence of a bad swap by comparing
a random number with the Boltzmann probability
distribution. Even a bad swap might lead to a good
swap eventually, in the view of a global optimurn.

The ntemps controls the stages in the annealing al-
gorithm. The number of stages depends on the stage
of convergence. The nlimit controls the number of
swaps to be attempted at each stage of the algorithm,
while glimit controls the number of good swaps al-
lowed at each temperature. We choose the number
nlimt and glimir based on the number of faces of tetra-
hedrization. In our case, we mulliply the total number
of faces by 5 (see Table 4.1). The initial tetrahedrizat-
ion(Delaunay) provides the total number of faces.
These two values allow the exploration of a wider
class of possible tetrahedrizations, increasing the
chance of finding the global optimum.

We should limit the number of good swaps. The
idea is that if one makes too many good swaps too
soon, the algorithm will not find its way out of a false
valley and into the region of the global optimum, We

can describe our simulated annealing algorithm as:

do initial tetrahedrization
do k=1 to ntemps
te=lp— k7,
do /=1 to nlimit
while
the number of good swaps < glimir
choose a random face of existing
tetrahedra
if possible (see 2.2.2)
if desirable (see 2.2.2)

make good swap



1560 S EPXCIEE =X M3 M 655(96.11)

cise
choose a random number §
where 001
if 0 < e9/ accept bad swap
endif

endif.

Initial temperature fo is fixed as twice the maxi-
rum difference of cost between one way of swapping
and another. In our context, cost means the difference
between the actual function values and the approx-
imated values at sampling points. If the initial tem-
perature is too high, the space is searched inefficiently
(virtually every bad step is accepted). If the initial
temperature is loo low, too many function evaluat-
ions are required lo escape from a local optimum.
The i, is decreased by factor 7, in Equalion (4.1) at

each stage. In our case, 7z is 0.95.
Ly=tp—1% 7y (4.1)

The probability of a bad swap is slowly reduced ac-
cording to a prescribed annealing schedule. The prob-
ability of making a bad swap at temperature #; for a

given value 4 is
Pr{g=<ed/b) =gt (4.2)

where d is the difference of cost between one way of
triangulation and another, and 6 is a random number
such that 0 =<0 1.

The £ is analogous to temperature in the annealing
of metal. As the fr gels smaller, a bad swap is less
likely to occur. The initial temperature can be almost
twice the greatest cost (see Table 4.2). If one selects
the small initial temperature, the algorithm will con-
verge quickly, but often it will converge to a local op-
timum instead of global one.

The total cost is calculated by summing cost values
at each common face based on criteria defined in
Chapter 4 such as least squares fifting, gradient dif-

ference. #nd jump in normal direction derivatives. Ii
is very inefficient to determine the acceptance of each
swapping by calculating the tetal cost. In our case, Jo-
cal swapping is testricted in its convex hull. In Figure
4.1, the shaded tetrahedra represent the convex hull
for the local swapping which is restricted. In other
words, the cost of a locally swapped common face 1s
changed. while others remain the same. When deter-
mining the acceptance of each swap, we can save the’
time required to evaluate the total cost by calculating

only the cost of the changed common face.

(Fig. 4.1) Convex hull{shaded) for the local swapping which
is restricted.
(Tg! 4.1) HiFte K== mERs 2|5 convex hull

The probability of accepting bad swaps can be de-
termined by an annealing scheduling (see Figure 4.2).
Qur annealing scheduling has the characteristics of
the Boltzmann probability distribution. An ammealing
scheduling consists of two stages. In the first stage,
the system is optimized at a high, effeclive tempera-
ture. In the second stage, the temperature is cooled by

slow stages until the system freezes and no further

e

Ny~

4 -

T T T
d
S LI TR S /1,
{Fig- 4.2) Probability to making bad swaps.
(02 42) TX 28 mH0| Yojg T A= BE
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changes occur. What might be considered a bad swap
for a local optimum, migkt be a good swap for a glo-
bal optimum, or vice versa. Also, what appears as a
bad swap originally for a local optimum, might be a

good swap in the long run.

To search for an optimal tetrahedrization at each
stage, one may choose at random, from all the te-
trahedra and four faces, one tetrahedron.and one
face. The algorithm improves continuously by swap-

ping interior faces unti! it converges.

o

(Table 4.1) Values of Parameters nlimit and glimit
{E 4.1) o= nlimit@} glimite] 24

number of data points 5Xtotal number of faces

1000 5x 12697
5000 5X 66190
10000 5x 132892

{Table 4.2) Values of Parameter ty
(I 42> IR 2 2t

cnlerion test function 2 test function 8§
least sq. 0.1 0.6
grad. diff. 6.6 6.6
dir. deriv. 6.2 6.2

4.3 Averaging Technique

One must compare the case in which two tetrahedra
become three tetrahedra in an objective manner. Two
tetrahedra bave one common face;however, three
tetrahedra have three common faces. One needs to
employ a reasonable averaging method for compari-
son with one common face and three common faces.
We use the least squares averaging technique.

For example, we need to find the average of three
cost values (i.e. D1, D2 and D3). We need to sort three
cost values in ascending order. We try to fit three cost
values with a straight line L, which has a minimum of
R (see Figure 4.3). After we delermine coefficients @
and b of the straight line L, we calculate the poly-
nomial value of its midpoint(i.e. x=2, y=ax +5).

=
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R = r,2 + r:2 + r?;

L.is the straight line which is a linear
function ve=ax+b ;

D is three cost values ;

r, is the difference between polynomial
value and the observed data value.

(Fig. 4.3) Least squares averaging technique.
(722 43) 2 A 27 7y

5. Validation Study

We introduce 2 test functions based on the 3-D
version of Franke’s test function, and explain visu-
alization techniques for 4-D functional space includ-
ing iso-surface and color contouring methods, while

presenting numerical and graphical results.

5.1 Test Functions

_ tank(Qy—9x—9z) +1
9

5 (5.1
Je=tanh(—3x(0.595576 ¢z +3.79762)2 —x — y— 10))
+1.0 (5.2)

The above two test functions can be considered by
referring to Franke’s test functions[19]. To make the
4-D version of Franke’s test functions, we just add
another paramecter ‘2’ to each 2-dimensional original

test function.

5.2 Visualization of Iso-surfaces
One can use the iso-surfaces visualization to inves-

tigate the quality of 4-D space through trivariate in-
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wipaolation, In Figure 3.1, the comparison between
ihe desirable surface and the undesirable surface is

shown. We assume that an actual 1so-surface 1s {lat.

1 ndesirable 1so-surface
| csirable 1so-surface

(Fig. 5.1) Validation study based on iso-surface method.
(38 5.1) SHHN 2|8 & Bt AL HT

One can classify all pessible cases of iso-surface in
a tetrahedron as sixteen cases. One can reduce the
number of cases to five by eliminating geometrically

identical cases (see Figure 5.2).

a)case 1 c)case3
H L
H
H
L
H H H
b) case 2 d) case 4

L L
H H
H L. L

e)case 5

(Fig. 52) Five cases of intersection between a tetrahedron
and 1so-surface.

(O3 52) ArEx et SHY TR O 5 I1X] B

5.3 Visualizing 4-D Space Using Color Contouring

We restrict ourselves to interpolations from the
space ST(TH) of piecewise linear functions defined by
its values at the four vertices of each tetrahedron TH;
of (Q). Mathematically,

SUTH)={g€CYQ:glm M}, G=1,..,N) (53)
where IT; is the space of linear polynomials of (x, ¥, 2).

We assign a different color for each functional band-
width to visualize 4-D function space through color
contouring method.

In Figure 5.3, the comparison between the desirable
functional contour and undesirable functional con-
tour is shown. We assume that an actual functional

contour is linear.

U Indesirable functional contour



Desirable funciional contour

(Fig. 5.3) Validation study based on color contouring method.
(77 53) M2 SO} 7|=F SEHE HAL A7

5.4 RMS Error

One can explain the method of caleulating RMS er-
ror with L, norm (see section 3.1.1).

One samples a unit cube rectilinearly through 8000
points (i.e. 20X20x20). Some parls of sampling
points are inside of the convex tetrahedra and have
approximated values. We use two test functions, pro-
posed in the Dyn's paper [9] We make 4-D test
functions from 3-D test functions.

The test function f2(x, ¥, 2) simulates a sharp rise,
making cliff-like iso-surfaces in a unit cube. The test
function fs(x, ¥, 2) resembles f2(x, ¥, z). Their iso-sur-
faces are also cliff-like. Their actual function spaces

of test function 2 and 8 are shown in Figure 5.4 and

. " Actual Functional Space (Test function # 2 ).

(Fig. 5.4) An actual functional space of test function #2.
(T8 5.4) 2 B Al Bl MHH B4 Z7H
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Figure 3.5, respeciively. Data dependent criteria work
more effectively on a function that has a preferred di-
rection. We test five data set (i.e. 1000 data points).
Data dependent criterion, least squares fit criterion,
leads to a smaller RMS error than Delaunay tetra-

hedrization (i.e. Sphere crilerion).

(Fig. 55) An actual functional space of test function 8.
(3% 5.5) 8 ¥Hy AlE &9 AR B I7)

Delaunay Least
squares
firting.

Gradient Directional
difference derivatives

(Fig- 5.6) Layout of Figures 5.7 through 5.10
(18! 56) 212! 5701 12! 5.10 7HK] UL WX

All figures, 5.7 through 5.10, have the same layout
as shown in Figure 5.6. Delaunay tetrahedrization is
based on sphere criterion. It is a data independent cri-
terion. Least squares fitting, gradient difference, and
jump in normal direction derivatives are data depen-
dent criteria. We will show that tetrahedrization based
on data dependent criteria provide a better approxi-

mation than the tetrahedrization based on data inde-



1564 SIRTEME(ET =FX| M2F M 6596.11)

pendent criterion (Delaunay tetrahedrization). In Fig-
ure 5.7 and 5.8, the Iso-surface (i.e. constanl function
value is 0.1) and the functional space are shown re-
spectively (the test function #2 and 1000 data points).
In Figure 59 and 5.10, the iso-surface (l.e. constant
function value is 0.01) and the functional space are
shown respectively (the fest function #8 and 1000
data points).

We can see ithal dala dependent eriteriz (e, icast
sguares filting. gradient difference, and jump in direc-
tional derivalives) provide a betler approximation than
sphere criterion (ie. Delaunay tetrahedrization). Also,
least square fitting criterion leads lo a better approxi-
mation than other data dependent criteria. However,

leasl squares criterion assumes that exact function

values are already known.

(Fig. 5.7) Visualization of iso-surface(const=0.1, test func-
tion 32, 1000 data).
(8 5.7) SEe| I =01, 2 1 AJH g, x|
2 1000 7H)

snel Space (1000 dats, funct. #2) ‘
- . w .o lﬂ__f_r_.uh--{ )

(Fig. 5.8) Visualization of functional space (test function
#2, 1000 data points).

(212 58) g BT JIAIE (2 BiRf AE B, R

1000 74)

(Fig. 5.9) Visualization of iso-surface(const=0.01, test func-

tion #8, 1000 data).
(22! 59) SHe| JIAEH (A =001, 8 HIE AlE g4, X}
& 1000 7H)

orial Space (1000 data, funct. #8)

(Fig. 5.10) Visualization of functional space (test func-
tion #8, 1000 data points).
(3 5.10) & SZ2] JIAS (8 WH A &=, A2
1000 7H)



a) Test Tunction:

_ tanh(@y—9x—9%z) +1
- 9

falx, v, 2)
Resolution 6787/8000 points and 1000 data points

* Error measurement based on L; norm

1) Delaunay: 0.007475
2) Least squares fitting: 0.001570
3) Gradient difference: 0.005445
4) Directional derivatives: 0.004361

b) Test function: fz(x, ¥, 2) =lanh(—-3g(x, v, 2)) +1,
where g(x, ¥, 2) = 0.595576(z +3.79762)2 —x ~ y—10.

Resolution 6787/8000 and 1000 data poinls

#* Error measurement based on L; nom

1) Delaunay: 0.091196
2) Least squares fitting: 0.036494
3)Gradient difference: 0.073935
4) Directional derivatives: 0.059416

5.5 Time Analysis

To do time analysis, we measure CPU times on a
DEC 3000 (Alpha-AXP processor). The time unit is a
second. Least squares fitting criterion is the most fime
consuming method. Delaunay tetrahedrizalion is ex-
tremely faster than any other data dependent tetrahe-
drizations. The most time would be taken by a sim-
ulated annealing to achieve the global-like oplimum.
If accuracy is extremely critical, the cost of compu-
tation time can be compensated through super com-

puting machine.

tanh(9y —9x—9z) +1

a)fix, y, 2)=

9
1) 1000 data points
1) Delaunay: 1.9
2)Least Squares: 15241.7
3) Gradient Difference: 7087.8

4) Directional Derivative : 6319.8

b)fi(x, 3, 2) =tanh(-3g(x, 3, 2) +1,
where g(x, y, 2) =0.595576(z +3.79762)* —x — y—10.

1) 1000 data points

1) Delaunay: 1.9
2) Least Squares: 9269.6
3) Gradient Difference: 4899.0
4) Directional Derivative: 3548.9

6. Conclusions

This paper discussed new dala dependent criteria
including gradient difference and jump in normal di-
rection derivatives. The exlension of Schumaker's
{east squares fitting criterion is defined on 3-D space.
This paper eslablished several methods of a validation
study including the visualization of iso-surfaces, and
the color centouring of a functional space.

A variety of test cases verified that data dependent
tetrahedrization improves the quality of approxi-
mation and that long and thin tetrahedra, which are
avoided in other criterion (.. sphere criterion), may
be suitable. This statement is especially true when the
test function has a strong preferred direction.

The shape of tetrahedra in domain becomes more
sensitive to RMS error when we perform a linear in-
terpolation based on the given domain. In other words,
the shape of tetrahedra in domain becoms more im-
portant in case of linear interpolation than higher de-
gree of interpolation than higher degree of interp-
olation. In this paper, the visulaization of 4-dimens-
ional scattered data interpolants from tetrahedral do-
main is focused. The visualization of tetrahedral do-
main will be presented in a separated paper.

Data dependent tetrahedrizalion may not be better
than Delaunay tetrahedrization for a certain type of
data (ie. round-like function). We assume that our
data are randomly scattered. However, this may not

be true in a real world application (ie. medical im-
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age). We need o (ind more desirable eriteda which
can be wuseful for more general types of data. We
strongly believe that our visualizalion routines are
usclul for verification of new eriterja.

Applications of 4-dimensional scattered data visua-
lization can be enumerated, including climate data,
medical image data, and air pollution data. For fur-
ther research, high degree interpolation can be attem-
pled instead of linear interpolation, even high com-
plexity of computation for gradient estimation is
expected. In this case, we need to consider a trade-off

between accuracy and cost computing,
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