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Conditional Moment-based Classification of Patterns Using Spatial

Information Based on Gibbs Random Fields

Ju Sung KIM' - Myoung Young Yoon 'f

ABSTRACT

In this paper we propose a new scheme for conditional two dimensional (2-D) moment-based classification of
patterns on the basis of Gibbs random fields which are well suited for representing spatial continuity that is the
characteristic of the most images. This implementation contains two parts: feature extraction and pattern classifi-
cation. First of all, we extract feature vector which consists of conditional 2-D moments on the basis of
cstimated Gibbs paramcter. Note that the extracted feature vectors are invariant under translation, rotation, size
of patterns. Next, in the classification phase, the minimization of the discrimination cost function for a specific
pattern determines the corresponding template pattern.

In order 1o evaluate the performance of the proposed scheme, classification experiments with training docu-
ment sels of characters have been carried ont on 486 66Mhz PC. Experiments reveal that the proposed scheme
has high classilication rate over 94%.

1. Introduction
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Pattern Classification is an essential part of the high
level image analysis system. In the recent computer
vision literature there has been increasing interest in
use of statistical techniques for classifying and pro-

cessing image data. Statistical image analysis concerns



the measurement of quantitalive information {rom an
immage 10 produce a probabilistic description.

The goal of a typical computer vision system is to
analyze images of a given scene and classify the con-
lent of the scene. Most of these systems share a gen-
eral structure, which is composed of four building
blocks[1]. The first building block is image acquisition-
converting the scene into an array of numbers that
can be manipulated by the computer. The second
building block 1s preprocessing. which involves remov-
ing noise, enhancing lhe picture. The third building
block is feature extraction, whereby the image is repre-
sented by a set of numerical “features” to remove re-
dundancy from the data and reduce its dimension be-
cause of computational burdens. Finally, the fourth
building block is lo recognize an object regardless of
its orjentation, size and location. Selection of “good”™
features is a crucial step in the process. “Good” feat-
ures arc those salisfying the following requirements:
(i) small interclass invariance-slightly different shapes
with similar general characleristics should have nu-
merically close values;(ii) large interclass separation-
features from different classes should be quite differ-
ent numerically. These features (or shape descriptors)
may be divided into five groups as follows [2]:

* Visual features(edges, texture and shape);

* Transform coefficient features(Fourier descriptors);

* Algebraic features(based on malrix composition

of the image);
* Statistical features(moment invariants);

» Differential invariants(used especially for curved

objects).

Since stalistical features are invariant under trans-
lation, rolation, size of the palterns, the moments are
very useful features for pattern elassification. In [I, 3,
4], their proposed moments that provide features for
classification of patterns have been used for a number
of image classifying applications. Their proposed mo-
menis are calculated by using the intensity at each
point. However, their peformance for pattern classifi-

cation is poor since the moments did not included
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spalial information which is the characteristic of (he
most images.

In order to overcome the drawback of their pattern
classification methods, we proposc a niew scheme for
conditional 2-D) moment-based classification of pat-
ferns using spatial information based on Gibbs ran-
dom ficld (GRF). Gibbs random ficlds are well suited
for representing statistical dependence (or spatial con-
tinuity) of the pixel value at a lattice point on the
those of its neighbors [5, 6]. Previously, Derin and
Won [7], Geman and Geman [5], Schunichiro [8], and
Tekalp and Pavlovic [9] considered image processing
using Gibbs random field. However, their works are
concerned with only both restoration and segmen-
tation.

We propose a method for pattern classification
using spatial information based on Gibbs random
fields. This implementation contains two parts:fea-
ture extraction and pattern classification. First of all,
we estimate the parameters of Gibbs random fields to
model a pallern image. And then we obtain [eature
vector which consists of the calculated conditional
2-D moments. Note that the extracted feature vectors
are invariant under translation, rotation, size of pat-
terns. In the classification phase, the minimization of
the discrimination cost function for a specific pattern

determines the corresponding template pattern.

2. Gibbs Distribution for Pattern Classi-
fication

In this section we review the basic definition and
the properties of GRF. And we also present a par-
ticular class of Gibbs distribution that is used in the
image model of this paper.

2.1 Gibbs Random Fields

We focus our attention on discrete 2-D random
fields defined over a finite N\ X N, rectangular lattice
of points(pixels) defined as L={(x, y):1<x<N,, 1<
Y< N>}, Suppose Q ={¢xy} represents a image, where
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¢ measures the grey-level{or intensity) of the pixel in
the x-th row and »v-th column, Let 4 be neighborhood
system defined over the finile L. A random field O =
(:;1 on L has Gibbs Distribution (GD) or equival-
cnlly is @ Gibbs Random Field with respect to 7 if

and only if its join! distribution is of the form [6, 10]

1
PQ=aq)=— expl —Eq) (1

where Z=3% exp{E(g)} is a normalizing constant,
q

called the partition function; Elg)= Y. VAq) is en-

[y
ergy funclion;c is a clique, a sel of sites(including
single siles) such thal any Iwo elements in the set are
neighbors of each other:C is the set of all cliques of a
latlice-neighborhood pair (L, #);and ¥V Ag) is the po-
tenlial associated with clique ¢, arbitrary except for
the fact that it depends only on the restrictien of ¢ lo
¢. Let ™ be the mmth order neighborhood system. Cli-
que lypes for the first-order and second-order neigh-
borhoods syslems are depicted in Figure 1. The source
of the revived interest in GD, especially in the context
of image modeling and processing, is an important re-
sull known as the Hammersley-Clifford theorem.
Besag (10] derives an expression for the joint prob-
ability P(Q=4g) in terms of the conditional probabil-

ities(local characteristics) P(Qxy = ).

(x—~1,%

L(e,—D] (5.3 [(y+D

|

{(x+1,3

(a) n*-neighborhood system

{(x—1,v—1) (x=1,% | (x—1,v+1)
(x,4—1) (2,3 (x;v+1)
(+1, 3= (x41,%) | (x+1,++]D)

(a) 7 -neighborhood system

Equivalently, P{Qz: = gey [ fxy) Cexp{ — E(¢.,)} where
HElgzy) is the energy function for pixel site (¥, ¥). The
GD is basically an exponential distribution. However,
by choosing I {g) properly, a wide variety of distribui-
ions both for discrete and continuous random fields
can be formulated as GD. The GD characterization
in some applications provides a more workable spatial
model [11].

2.2 Gibbs distribution for Pattern Classification

In this subsection, we present a particular class of
GD, which is used to estimate the parameters of Gib-
bs distmbuled image. We assume that the random
field Q consists of binary-valued discrete random
variables {0z, } taking values in Q ={w,, w2}. To de-
fine GD it suffices to specily the neighborhood sys-
tem #. the associated cliques and the the clique po-
tentials ¥ {g)’s. Here, it is assumed that the random
field is homogeneous, that is the clique potentials de-
pend only on the clique type and the pixel values in
clique, but not on the position of the clique in L. The
distribution is specified in terms of the second order
neighborhood system 2. Figure 2 shows the parame-
ters associated with clique types, except for the single
pixel clique.

The clique potentials associated with n? are defined
as follows.

slissly

(b) Cliques in #*

0 mHr b
-+t

(b) Cliques in #?

(Fig. 1) Neighborhood systems z* and 72, and their associated clique types.
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(Fig. 2) The parameters associated with clique types.

R

—{ if all ¢x,’s in ¢ are equal

Vf(Qxy) = ¢

otherwise 2)
where { is the parameter specified for the clique type
c. For the single pixel cliques, the clique potential is
defined as
Vt(qrv) —ak {or Gxy = k. (3)
The parameters a; control the percentage of pixels
in each site, that is the marginal distribution of the
single random variables Q:,’s, while the olher para-

meters control the size and direction of clustering.

3. Proposed Moment and Classification
Scheme

In this section, we describe a parameter estimation
method of Gibbs distributed image since calculation
of conditional 2-D moment requires the estimated
parameters of Gibbs distribution. And then we pro-
pose a conditional 2-D moment that contains the
spatial information based on GD and construct fea-
ture vector which is composed of the proposed mo-
ments. Finally, we proposed discrimination distance

function for pattern classification.

3.1 Estimation of Parameters in a Gibbs Distributed
Image

In this subsection our aim is to estimate the par-

ameters of Gibbs distributed image. The most com-

monly used parameter estimation method to date is

the so-called “coding method”, first presented by
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Besag [10]. It requires the solution of a sct of non-
lincar equations. Therefore, it is cumbersome and dif-
ficult to use reliably.

In view of the practical difficulties involved in using
the coding method [12], we describe an allernative
parameter estimation scheme for (inite range spacc
GRF, which consists of histogramming and a stan-
dard, linear, least squares eslimation as ifs compon-
ents. We present the formulation in lerms of a second
order neighborhood syslem 72, although s extension
to any order is possible.

Suppose @ is a GD of the class described in Sec-
tion 2.2, with a discrele range space of 2 ={w, wa}.
A realization ¢ of this random field is available 1o be
used in estimating the parameclers of the distribution.
Consider a site {x. ¥) and its neighborhood #,,. For
convenience of notation, lel s represent gy and ¢ rep-
resent lhe vector of the neighboring values of gy,
that is,

U=lu, uz, s, s 01, 1, U3, val” (4)
where the location of #'s and ;s with respect to §

are shown in Figure 3.

U U vy
Wy | 8§ Ly
Uy Uy Uy

(Fig. 3) gxy and ay-

We define indicator functions

1 if h=h= =
I(h.,hz,...,hg={ =i ¢
1 otherwise &)
and
=1 s$=w,
J,,,(s)z{
0  othcrwise. (6)
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We can express the potential functions of the GD
in lerms of these quantitics. Let F(s, 7, 0) be the sum
of the polential functions of all the cliques that con-
lain (%, ¥), the site of s. That is (s, ", )= Y. V.

cisEC

(¢) where 0 ic the parameter vector
O0=f{ar, a2, B1, B2, V1, V2, 73, Ya, &) )

Using the clique potentials for this class of GD we
can write ¥ (s, £', 6) as V(s, £, 0)=p"(s, )0 where

pls, D=1J1s), Jals), (I(s, va) +1(s, vo)), (L5, 1) + (s, v3)),
(s, 12, v2) 105, wes, 23} +1(5. 101, 1)),
{Is, ua, ws) +Is, 20, 13) 115, 2y, 1)),
(s, w2, ) +1Gs, w1, ug) +1(s, 13, v3)),
(I(s, u;, o) +1(s, us, v3) +I5, s, 1)),
s, 21, w1, 202) FI(S, 13, 13, 103) +H(S, 25, 15, ua)
+i(s, us, v4, 1)) ]7. (8)

Now suppose P(s, £) is the joint distribution of the
random variables on the 3X3 window centered at (x,
#) and P(¢") is the joint distribution of the random
variables on #zy only. Then the conditional distn-
bution P(s]#) is given by the ratio of P(s, #) to P
(¢). 1 follows from the GRF-MRFE equivalence and

the resulting local characleristic that

P(S, t) _ e~V .0

A Z@&, 0)

)]
where Z(#, 6) is the approprate normalizing con-

stant. Hence

D P )
Pis,t) ~ P@)

(10)

is obtained. Note that the right-hand side of (10) is in-
dependent of s. Considering the left-hand side of (10)
for any two distinct values of s, e.g., s=7 and s=4,

we have

PG, 1)

(plk, t)—p(7, t )T G=In PED)

(1

where p'(k, ¢)0=V(k, t°, 0). Consideration of ali
possible triplets (7, &, 7, 7 <k, generates from equ-
ation (11) a large set of linear equations, which may
be solved for 0 by least squares procedures. The ques-
tion that remains lo be answered, now, is how to de-
termine or estimate P(s, ') for all (s, ") combinations
using a single or a few realizations. We propose to es-

timate P(s, ") using histogram techniques.

3.2 Proposed conditional 2-D moment based on GD
The basic and classical moment, A regular 2-D mo-
ment of order (& --/) 1s defined by [1, 13]

ma=|" [T #era ), (12)

where f(x, ¥) is the intensity at a point {x, ¥) in the
image and &, (=0, 1, 2, ---. Since this lwo dimen-
sional integration can be viewed as if the image ir-
radiance function f(x, %) is projected to onto the mo-
ment kernel {x*37}, the regular moment will be re-
ferred as geometric moment (GM). The moments pro-
posed by many researchers [1, 2, 4, 13] have not in-
cluded spatial information which is the charactenstic
of most images.

An an alternative to cope with the drawback of
geometrical moments, however, we propose con-
ditional 2-D moments which include spatial infor-
mation by using the estimated conditional Gibbs dis-
tribution, instead of f(x, ¥). Let § be the estimated
parameter vector of Gibbs distributed image described
in Section 3.1. The parameter vector f measures the
strength of interaction between pixels. Also, the clique
potentials {¥ {g.,)} specify the local characteristics P
(Qxy=4xy [ nzy), that is P(Quy=qay | Ny} Cexp{V dgry,
£, 6. By the MRF properly we see that P(Qyy=¢xy
| 7xy) = P(Qxy= Gy | L\(gzy)) where L\(gy,) is denotes
the set {gw:(k, 1) # (z, 7)}. In the general 2-D form
and for binary-valued images, the corresponding con-

ditional 2-D moments is given by the following steps.

* Step 1) Calculate the centroids ¥, ¥ of the con-



sidered shape as follows. Let 7(-) be the indicator
function.

My N

=3 3 x]s(QxJ'quyh?xy)

x=1y=1

(13)

YP(Qry=xy py) (14)
where P(Q.y=4.y|#x) that is proportion to exp{—Ve
(gxy, t', @)} is eslimated conditional probability of the
site (%, ¥) in the Gibbs distribuled image described in
Section 2.3.

* Step 2) Calculate ¢; and o, are Lhe standard devi-
ation of the image with respect to the coordinates x

and vy, given by

NN .

Or= \/ z z (xh._x_-)?- P(Qxyzq:rylﬂzy) (15)
rul 3t

Gy= \/ ﬁ \';l. (y_)_’)z i)(QxyZQxyl’]xy)- (16)

 Step 3)Calculate the 2-DD conditional moments
from (15) and (16) for £=0, 1, 2, ..., and /=0, 1, 2,
.... And then, we store these moments to a feature

vector,

muy=3 3, (——

Twl ymi O

N M e by
( XX )k (laiyl)l BQuy=anylney), 7
The required number of moments depends on: (i)
the level of the existing noise on the application and
(ii) the form of the considered shapes. The above mo-
ments are invariant under translation and magnifi-
cation of the image, but not under rotation. Thus, In

order to use them as classification features we have to

normalize with respect lo rotation.

The normalization is a simple operation, since only
a multiplication of the coordinates of the image by
e where ¢ is the rotation change of the object.
Table 1 shows the conditional 2-D normalized mo-
ments of template letter C, as well as two similar let-
ters(distorted C and O) of Figure 4.

!

!
|
!
{
]
|
!
I

L

{a) template

(b)shape 1

(c) shape 2

(Fig. 4) The template and the shapes to be tested.

{Table 1) The proposed moments of letter C and two similar letters.

Moments Mao | Mao | Mso | Mso | Mo | Mao | Moz | Mo | Mios | Mos | M1 | Mo
Shapes
Template 102 | 255 | 1.29 | 411 | 397 | 7.08 LI1| 292 1.02] 3.00 1.59| 3.09
Shape 1 1.06 | 267 | 131 | 415 | 397 | 7.26 1.04 | 2.83 1.22| 3.13 3.021 318
Shape 2 1.01 | 244 | 1.01 | 2.04 | 1.08 | 572 | ~1.10| 320 | —1.93] 420 | —2.91| 7.94
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3.2 Classiication
in order to clamify pallerns, we define @ the Jis
erimination cost function (DCF) A7, o) which i de-

fined by

R, o)=Y [7—Uysl? (18)

where 7oy denotes the j-th feature of the v-fk tem-
plate, {77 denotes the j-fh feature of the i-i% shape
under consideration and 4 is the dimension of the
feature veclors. The minimization of the index Az, @),
v=1.2, .. for a specific shape 7 determines the corre-
sponding lemplate v

The proposed DCF is a kinds of Euclidean distance
belween an arbilrary pailern vector Uy, and the w-ih
prototype vecior 7%,. Since the discrimination cost
function (1%} is a funclion of the proposed con-
ditional 2-D momenls, it is invaran! under lrans-
Jation. scaling and rotation of the considered shape.
Furthermore. Since the proposed DCF only require
some simple analvtic algebraic calculations, It is
characlerized by low compultation cosl. The ideal dis-
crimination of a shape corresponding exactly to a
template, withoutl any noise and computational error,
the index F(Z, v) should be zero. However, in practice,
the discrimination is clear if F(Z, ») is sufficiently sm-
aller in comparson with the other templates, as well

as small enough itself.

{Table 2) The DCF of the shapes of Fig. 4&

F (lemplate “C”, shape 1 “C")=2.17
F (lemplale “C”, shape 2 “0") =80.53

Tunle 7 shows the discrimination functions of the

viers of Figure 4. In Table 2 it is seen that A7, v) is

ently smaller for the distorted C.

4. Experimental Results

In order to illustrate the performance of the pro-
posed momen! for paftern classification, we carried
oul the following experiments was carried out. The
training document consists of 10 lines of 52 char-
acters each. Figure 5 shows the first line of the train-
ing document. Two documents were created for tes-
ting the performance of the proposed classification
method on the basis of the extracted feature vector.
Each docament consists of 24 lines 52 characters each.
Figure 6 shows the overall block diagram of the pro-
posed method for classification of patlerns based on
the conditional 2-D moment, where il is shown that a
document 1o be processed is at first scanned. Then
the classificalion fealurc veclors are cxlracted by
formulae (13) through (17). These features are sent to
a classifier, which is described by formula (18), for a
decision in order 1o identify the input character.

The gross structural featurcs of the shape can be
better characterized by the proposed moments derived
from 1lhe silhoueite. In our experiments we use only
silhouette moments since these moments are less sen-
sitive to noise. The used fealure vector M, for the
templates is considered (o be My = {3, 1h4, P25, 106,
o7, Mo, Mg, Mg, M50, Mo, M0, Mo

A classification simulation was run six times. The
first simulation used a library set of 52 feature vectors

derived from the first line of characters of the training

gqwerttyuiopasdfghiklzxcvbnonm
QWERTYUIOPASDFGHJKLZXCVBNM

(Fig- 5) The first line of the training document.
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(Fig. 6) Overview of the proposed method for classification
of patterns, which is based on the proposed con -

ditional 2-D moments.

document. The second simulation used two library
sets derived from the first two lines of the training
document. The third, fourth, fifth and sixth simulat-
ions used four, six, eight and ten library sets, respect-
ively. The classification rales resulting from these
simulations are presented in Table 3. As Table 3
reveals, we can achieve better than 94% increase in
classification rates when we use eight or ten library
sets. Since the proposed 2-D conditional moments
have properties of the affine or geometric moments,
as well as spatial information which describe depend-
ance between pixels, our proposed method was su-
perior to other methods using the affine moments and

the geometric moments, respectively.

{Table 3) The classification rates

No of | Flusser's method | Tsirikolias’s method | Proposed method(%)
library | using the affine | wsing the geomelric | using the conditional
sels | moments (%) method (%) moments

1 73 72 75

2 825 81 84

4 84 85 88

6 90.5 89 92

8 93 91 94

10 95 94.5 97.5

In our method, the incorrected classification of pat-
tern is caused by the insufficient clique function ¥ (s,
t’, 6) described in equation (8). Since the clique par-
ameter vector 6 is a measure which is the strength of
interaction between pixels, the clique potentials V{s,
£, 0) affect the Gibbs distribution P(Qry= gzy|rzy)
which is used in caleulation the proposed conditional
2-D moments. Thus, the method for pattern classifi-
cation which is based on the proposed moments de-
pends only the dique function. In other words, the
success of pattern classification depends on how good
the used clique parameter 6 fits characteristic of the
image. So, we will focus our efforts on further devel-
opment of the clique functions in order to complete
of the pattern classification.

8. Concluding Remarks

In this paper we propose a new scheme for con-
ditional two dimensional (2-D) moment-based classifi-
cation of patterns on the basis of Gibbs random fields
which are well suited for representing spatial conti-
nuity, This implementation contains two parts:fea-
ture extraction and pattern classification. First of all,
we extract feature vector which consists of con-
ditional 2-D moments on the basis of estimated Gibbs
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-paramcter. Nole that the extracted feature vectors arc
invarianl under {ranslation, rotation, size of patlerns.
Next, in the classification phase, the minimization of
the discrimination cost function for a specific pattern
determines the corresponding template patlern.

Upon completion of Lhe pattern classification, we
will focus our efforts on further development of the

clique functions.
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