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Abstract

In this paper, we present a robust performance improvement method for the NLCF(normalized left
coprime factor) uncertain structure using loop shaping and the structured singular value. For this, we
select weighting functions for a loop shaping considering condition number, and transform the NLCF
uncertain structure into the 4-block structure. However, we can’t get a good performance on account
of the restriction of weighting functions. To cope with this, we motivate the use of structured singular

17

value in the robust performance improvement procedure. After all,

the robust performance

improvement can be obtained by a factor W, and a scaling factor of D-K iteration.

I . Introduction

Robust stability in the presence of uncertainty
is an important issue in control system analysis
' And

the so-called performance such as tracking of

and has attracted considerable interests !’

the reference input and the steady state res-
ponse is another significant problem. Designing
a controller satisfying these objectives is very
difficult because of the tradeoffs between ro-

bustness and performance. Therefore many re-
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searchers have been studying the issue of the
robust performance. A new analysis framework,
based on the structured singular value g, has
been proposed by Doyle[2 to assess the sta-
bility and performance robustness of linear time
invariant feedback systems in the presence of
structured singular value. The
feedback that exhibits

stability and performance in the face of un-

design of a

system closed loop

certainty is the so-called g-synthesis problem.
The synthesis approach proposed by Doyle[3‘4‘5]

is an iterative scheme, referred to as D-K

iteration, that involves a sequence of scaled H™

based feedback design problems.

{61

McFarlane and Glover proposed a loop
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shaping design procedure which combines cla-
ssical loop shaping ideas with H~ robust sta-
bilization. But a loop shaping design ignores
structure of the uncertainty and stabilizes only a
shaped plant for which the uncertainty de-
scription may not be representative of actual
uncertainty (71

To cope with this, in this paper, we use a
structured singular value and the condition
number of loop shaping weighting functions.
Firstly, we select loop shaping weighting func-—
tions considering the condition number and then
design a controller. Secondly, we transform the
NLCF uncertain into the 4-block

structure in order to use the structured singular

structure

value and then proceed D-K iteration till satisfy
robust performance condition. Finally, we select
weighting factor W, to improve robust per-
formance. After all, the robust performance im-
provement can be obtained by a factor W, and a

scaling factor of D-K iteration.

O. Structured singular value and
robust performance

The block diagram in Figure 1 is the standard
framework for considering the robust feedback
design problem. The diagram represents any
linear interconnection of inputs, outputs, per—
turbations, and a compensator. G is the known
model that contains the plant to be controlled
and K is the compensator to be designed.

The synthesis objective is to find a K to
achieve nominal stability and performance of the
feedback loop and to provide robustness with
respect to the modeling error. The compensator
K in Figure 1 is known for the purpose of
analysis, and is incorporarated with the plant G
via a lower linear fractional transformation to
vield the closed loop operator M in Figure 2.
And the closed loop transfer function from the

inputs d to errors e in Figure 2 is given by
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Fig. 1. General framework for the robust feed-
back design problem.
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Fig. 2. Analyzed block diagram.

The following notations will be used through-
out:

¢! largest singular value

¢ smallest singular value

spectral radius

®.

:set of all complex perturbations with a
specific block diagonal structure and spec-

tral norm less than v

4,= {d= diagl 4,,d,, -, 4] | ) <v}

U: set of block diagonal unitary transformation

matrix
U = {diag[ Uy, Uy, =, U,] suchthat UeC** UU,=I,)
D: set of diagonal scaling matrix
D = {diagl d\I,,dsly, . d,I,] where d,€ R, d;>0}

Definition 1'°}.

The structured singular value of M, w(M), is
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defined such that g« '(M) is equal to the sma-
llest o(d) needed to make (I+M4) singular,

ie.,

£ H{M = min{a(d)|det(I+MI) = 0}

ded. (2)

If no ded, exists such that det(/7+Md) =0,
then p(M)=0.

Definition 1 is not typically useful in com-
puting x since the implied optimization problem

is cumbersome. Therefore we use equation (3)

max p( UM) < (M) < inf o( DMD™)

Ue U DeD

3)

in the optimization procedure.

Theorem 1 ®'. (Robust performance condition)

The robust performance is said to be achieved
if and only if (M) with respect to the struc—
tured uncertainty de d4,.,, satisfies

(M), (4)

Theorem 1 may be interpreted as a ’‘generalized
small gain theorem’ which also takes into acco-
unt the structure of 4.

M. Loop shaping in NLCF

A normalized left coprime factorization of
nominal plant G is a left coprime factorization

(N, i) of G which satisfies

NN+ MM *=1, forall sejR (5)

or equivalently, [ N, M]
is the field of real numbers.

is co-inner, where R

The perturbed plant G, given by

GA=(M+AM)“1(N+AN), (6)

can be stabilized by a single controller K given
by

inf
stabilizing K

. (D

€ max

IS P

(875)

19

a3 3. A3 LCF +&
Fig. 3. The structure of NLCF.

where S= (/+GK) ' and K is chosen over all
stabilizing controllers. The maximum stability

margin &m. 1S given by

Emax = (1 '_”N, M”%{)UZ, (8)

where | - Iy means hankel norm and defined as
follows.

(A,B,C,D) be the minimal
realization of Ge H®, and let P= P?, and Q=
QT be the solutions of the Lyapunov equations

Assume that

AP+ PAT+BBT = @

and

ATQ+QA+CTC=0 (10)

where P and @ are the controllability and ob-
servability gramians, respectively. Then the

hankel norm of G is defined as

IGlly= ol (PQY] . (11)

The robust stabilization problem of (7) does
not directly address performance. To overcome
this, Mcfarlane and Glover proposed that per-
formance and robustness tradeoffs are addressed
by implementing a loop shaping solution and a
brief outline is as follows.

(i) The nominal plant, G, and ‘shaping func-
tions’ W,, W, are combined to form the
‘shaped plant’, G, where G,= WGW,. We
assume that W, and W, are such that G;
contains no hidden unstable modes.

(il) Calculate emsx. If emx <1 return to (1)
and adjust W, and Ws.
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(iii) Select &< e, then synthesize a feedback
controller K., which robustly stabilizes
the normalized left coprime factorization
of G..

(iv) The final feedback controller K is then
constructed by combining the H~ con-
troller K., with the shaping functions W

and W, such that K= WK.W.

IV. Robust performance improvement

In this section, we describe the key features
of the controller design technique for robust
performance improvement in NLCF. In order to
do this, we consider the 4-block structure (12)

inf SG inf

2 | I o
= = =g
stabilizing K " KS KSG| stabilizing & o = Ymin max

(12)

which is equivalent to equation (7). The equi-
valence of equation (7) and (12) can be seen by
noting the fact that infinity norm is invariant
under right multiplication by a co-inner matrix
and then multiplying [ 1?5] ' by [ ¥ N]

161 " Also, equation (12) can be

which is co-inner
derived by considering robust stabilization in the
face of simultaneous input and output uncer-
tainty shown in Figure 4. The class of per-
turbed plants which is stabilized by a single
controller obtained from equation (12) can be

represented by
Ga= (I+4)7'GU +4y); | dlle = H gl 32 “ <e. (13)

Although the uncertainty of Figure 4 represents
simultaneous input multiplicative and inverse
output multiplicative uncertainty, it can still be
considered to be a left coprime factor uncer-

tainty:
Gs= M, Ny, (14)

My= MI+4y), Nj= NI+4y, (15)

s

i.e., input multiplicative uncertainties on each of
the left coprime factors of G, so that any
perturbed plant can be expressed in terms of
stable uncertainties.

1t is apparent that H~ robust stabilization may
not bhe appropriate for the procedure of loop
shaping. First, it ignores the obvious structure
of the uncertainty. Second, the loop shaping
design procedure robustly stabilizes only a sha-
ped plant for which the uncertainty description
may not be representative of actual uncertainty.
In this case we design against uncertainty in
the loop shaping weights.

Let AS=[ (‘)’mdo] be the shaped uncertainty,

5,

and A,.:[ g’ “ 0] be the actual uncertainty aga-
a,

inst which we would like the resulting design to

be robust stable. These uncertainties are shown

in Figure 4, 5, respectively.

AsZ Asl y

+ -

Gs -

t +

28 4. 4-59FAE /e AErR
Fig. 4. Uncertainty structure for the 4-block
problem.
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Fig. 5. Actual perturbation for loop shaping
design procedure.

By equating uncertainty at plant input and out-

put, we have
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0 4o 0 W W
And we can deduce that the closed loop system

will be robustly stable to any actual pertur-

bations such that

14l < 17

&
max {sup, «( W), sup, (W4)}"’

where ¢ denotes the condition number, i.e.,
o -)/o( +). If the loop shaping weights are not
well conditioned, then the actual uncertainty
bound will be less than that indicated by loop
shaping design procedure. Therefore we select
weighting functions considering condition num-
ber, and then design a controller satisfying
equation (7). This controller does not give rise
to a good performance due to the restriction of
loop shaping weighting functions. To get a good
performance, we motivate the use of structured
singular value.

In here, e, always satisfies ¢e.<1 and
M) = el = y.. for some shaped plant, equa-
tion (12) never satisfies w(M)<1. To overcome
this, we motivate the use of structured singular
value, and then use g-synthesis technique. The
u-synthesis problem does not yet as complete a
solution as does the H” synthesis problem. A
reasonable approach would be to try to find a

stabilizing controller K and scaling D so that

IIDMD ) < 1. (18)

One method to do this

minimize the above expression for either K and

is to alternately

D while holding the other constant. For fixed
D, the left-hand side of equation (18) is just an
H® control problem and can be solved using
H”-optimization controller design algorithms.
For fixed K, the left-hand side of equation (18)
can be minimized at each frequency as a convex
optimization problem in D. This is often referred
to as the D-K iteration and then, repeat the
process till satisfy equation (18). If designed

877
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controller satisfies robust performance condition,
then we use the weighting factor W, in order to

improve robust performance.

Theorem 2.

where

Let Mz[;?s SG a_[ WS  SG

KSGJ | WKS KSG
W, is real rational weighting functions in H”,

| Wllo<1. If the upper bound of
u(M)

inf o(DMD™) <1 then u(M") satisfies robust per-

DeD

formance condition.

and satisfies

the structured singular value satisfies

(Proof)

(2 S0 S5 4
LA ™A
(RN YA
= (DM'D™) < G(DMD™) o Wel [}]

& o(DM*D Y)Y < o(DMD™)

inf 0(DM*D™") < inf 5(DMD™")

De D DeD

=

inf o(DMD™) (1

DeD

If

then inf 6 (DM*D™Y) < inf 6(DMD ™) (1
D& D DeD

= #(M)< inf o(DM*D™Y) < inf o(DMD™) <1

DeD De D

= u(M7<1. [ ]

In theorem 2, weighting factor W, can be looked
upon as a weighting function of inverse output
multiplicative uncertainty(or equivalently output
disturbance). In other words, we can select
weighting factor W, as weighting function of
general H”-optimization problem. For example,
we use W, to improve performance such that
steady state error, overshoot, rising time, and
tracking of the reference input. After all, the

designed final controller satisfies
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#(M)< info(DM'D™) < infa(DMD™) (1 (4g)
DeD peD !

and the robust performance improvement can be

obtained by a scaling factor of D-K iteration

and weighting factor W,.

The procedure of robust performance improve-

ment in NLCF are as follows:

step 1. Select loop shaping weighting functions
so that o(W)~1 and (W) =~1.

step 2. Design a controller using a procedure of
loop shaping.

step 3. Transform the NLCF uncertain structure
into the 4-block structure.

step 4. Design the controller using D-K itera—
tion and determine scaling factor.

step 5. Choose the weighting factor W, and

design the final controller.

The wupper bound of (M%) relating the
singular value of element M and the condition
number of loop shaping weighting functions are
very important. Therefore we investigate some

facts from the following theorem and lemma.

Theorem 3 7.

Consider the M=[ ﬁ" ﬁ;] and the structured
21

singular value defined by definition 1. At each

frequency, (M) satisfies the following bounds:

u(M) < {E(Mlz)E(Mm)}l/z + max {E(Mn), E(Mzz)}

(Proof) See reference [8].

Lemma 1.

The upper bound of p(M?%) is

-2
WM < e )W) + (T 2=y o )

1 0 (G |
1+0%(G) +0 %Gy
+ {a( M) o M) 2, if

#{M) < max (E(Mu). E(Mzz)) + (E(Mlz) E(Mm))m, where

G.= WGW, e= 7L
(Proof)

(M) < max (o M), o( M)} + (M) o My )}
= u(M< o My) + o My) + {o( M) o Mo}

where o(M,))=o(S)< o M)c(W)}, and o(Mp) =0
(KSGY< H{o N)e(W)} (by theorem [6])

= w(M oA o( M) AW) + ol N W] + {o( M)
E(MZI))I/Z

In equation (5), we have
MM~ 1—- NN, = I— I,W%GW,W,G" W, M}
= M M=+ WCWWG W)™

- _ 1 1/2
= a(m_(l+gz2(WzGW,))

NN = G M G,
= (WG W MCWI I+ WG W WGWE) ™

o P (WGW) e

= oA N)=( 1+ 7 2(WGW)

s <A ( M e W)

1
1+ ¢ 2(WGW)

a H(mGW)

+ 1+ 0 *(WGW)

WAL + {o Myp) o M)}

E i ( Gs) )112

1/2
)T el +( 1+70 %Gy

= s ey

W)+ {o Myp) ol M)}

a 1 0 *(G)
= uMI<p(M<A (m)llzd%) +(m)”z
W)+ {o( My) a( M)}
« 1 e _ﬂL 172
= w(MY=<A (1+_(Z2(Gs)) C(WZ)+(1+¢—12(GS))
AW+ (ol M) a( M)}
o 1 1 12 (A IINT
= M= [ (h1+;zz(Gj)) C(WZ)Jr(—lﬂ-EZ(G_S))
ﬁ(m)] +(E(M12)E(M21)}”2 u

Lemma 1 shows that the upper bound of
#(M?) concerns the condition number of loop

shaping weighting functions. If we choose wei-

(878)
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ghting functions with large condition number,
then the upper bound of u(M?) becomes larger.
Hence constrained loop shaping weighting func-
tions, such that «W)=1 and o« W)=1, give a
tight upper bound of x(M?). Conclusively, since
the loop shaping weighting functions affect
in NLCEF,

mance can be improved by proposed method.

robust performance robust perfor-

V. Example

This section presents a simple design example
to illustrate the proposed method. We take the
underwater vehicle model as follows.

—0.7203 0 —0.2939 —2.8025 0
—0.001 —4.5853 10.9267 —0.0142 0

A= 0.0188 12.176 —33.7341 —0.1663 0
0 0 1 0 0

0 1 0 —23.148 0

B= [0 —19.5148 1224154 0 0] T (20)

£33 % BR FAo5H 23

cope with this, we motivate the use of D-K
iteration, and the result is shown in figure 7.
Finally, to improve robust performance, we
select W,= (0.8s+1)/(s+5), and get a good re-

sult as shown in figure 8.
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Fig. 7. p¢-plot in step 4.

C=[0 0 0 01 bD=[0.
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Fig. 6. g-plot in step 3.

The simulation of this example is implemented
by Matlab and #—Toolboxm. First, we design
W = (0.9s +2)/
and then transform to the

a controller using step 1, 2,
(s+1.2), W=1,
4-block structure. However, from figure 6, we
know that the designed controller does not

satisfy the robust performance condition. To

(879)

mu Plot
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08t
‘_/‘ \\».\
0.798 e
9.796
10? 10" 10° 10’ 19 10°
Frequency(rad/sec)
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Fig. 8. p-plot in step 5.

VI. Conclusion

This paper proposes a method of robust per-
in feedback systems
which have NLCF uncertainty. For this, we

motivate the use of the structured singular

formance improvement

value and investigate a condition number of loop
shaping weighting functions. In this case we
select

loop shaping weighting functions of
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o W) =1 and

troller. To

o W) =1, and then design a con-

improve the robust performance,

factor W, and scaling factor of D-K iteration
are used in the final controller design procedure.

And, we find the upper bound of #(M®) relating

the singular value of element M and the

condition number of loop shaping weighting

functions.
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