
박영자
숙명여자대학교 이과대학 화학과

The Structure of Tetra-tert-butyl-dipropionyloxy-dihydroxycalix[4]arene

Young Ja Park
Department of Chemistry, Sook Myung Women’s University, Seoul, Korea 140-742

초 록

Tetra-tert-butyl-dipropionyloxy-dihydroxycalix[4]arene (C50H64O6)의 구조를 X-선 회절법으로 연구하였다. 결정의 공간군은 C2/c이다. 단위세포 상수는 $a=16.067(2)$, $b=26.391(17)$, $c=10.335(1)$ Å, $\beta=94.26(1)^{\circ}$, $Z=4$, $V=4370.2(29)$ Å$^3$. $D_c=1.16$, $D_m=1.2$ gcm$^{-3}$이다. 회절벨들의 세기는 Enraf-Norius CAD-4 Diffractometer로 얻었으며, Cu-K$\alpha$ radiation ($\lambda=1.5418$ Å)을 사용하였다. 분자구조는 직 접법으로 풀었으며 최소 자승법으로 정밀화하였다. 최종 신뢰도 R값은 2354개의 회절벨에 대하여 0.07이었다.

이 calix[4]arene은 1, 3-alternate conformation을 가진 분자로 2개의 propionyloxy groups이 위쪽에 있고, 마주보는 두개의 hydroxy groups이 아래로 향해 있으며, 분자 한 가운데에 결정학적 symmetry axis와 일치하는 2-fold symmetry axis가 있는 분자이다.

Abstract

The structure of the tetra-tert-butyl-dipropionyloxy-dihydroxy calix[4]arene (C$_{50}$H$_{64}$O$_{6}$) has been determined by X-ray diffraction methods. The crystal is monoclinic, space group C2/c, unit cell constant $a=16.067(2)$, $b=26.391(17)$, $c=10.335(1)$ Å, $\beta=94.26(1)^{\circ}$, $Z=4$, $V=4370.2(29)$ Å$^3$, $D_c=1.16$, $D_m=1.2$ gcm$^{-3}$. The intensity data were collected on an Enraf-Norius CAD-4 Diffractometer with a graphite monochromated Cu-K$\alpha$ radiation ($\lambda=1.5418$ Å).

The structure was solved by direct methods and refined by least-squares methods. The final R value was 0.07 for 2354 observed reflections. The molecule has the 1, 3-alternate conformation with own two-fold symmetry axis, 2 propionyloxy phenyl groups are up and the other two hydroxy phenyl groups are down.
I. 서론

Calixarene\textsuperscript{1, 2}은 benzene고리로 구성된 고리화합물로서 동공이 지니고 있어 host-guest\textsuperscript{3}에 의한 선택적 작물형성이 가능할 뿐만 아니라, 분자구조의 특정 위치에 촉매로 작용할 수 있는 기능기를 도입할 수 있기 때문에 이를 이용한 화소모형화가 가활보 반으로 이루어지고 있는 분야이다. 그 화합물의 모양이 'calixcrater' 라 부르는 그리스 꽃병과 비슷하다고 해서 'calixarene' 이라 불리는 benzene핵의 수를 calix와 arene 사이에 \([n]\)으로 표시한다.


효소 모형 연구에 이용되기 위해서는 작물이 형성하는 능력이 있어야 할 뿐만 아니라, 촉매로 작용할 수 있는 기능기들이 적절한 위치에 존재하여야 하기 때문에 calixarene의 특정 위치에 기능기를 도입하는 방법에 대한 연구가 다양하게 진행되고 있다.

Calixarene는 benzene단위의 구조적 배열에 따라 cone, partial cone, 1, 2-alternate, 1, 3-alternate의 4가지 conformer로 존재한다. calix[4]arene의 4가지 isomer 중 cone, partial cone conformation을 갖는 화합물에 대해서는 X-선 결정학으로 많은 연구가 이루어졌지만, 1, 2-alternate나 1, 3-alternate conformation을 갖는 화합물에 대해서는 연구 결과가 많지 않다. 1,3-alternate conformation을 갖는 구조 연구는 bis(ethoxycarbonylmethoxy)-bis (2-pyridylmethoxy)-tetra-tert-butylicalix[4]arene\textsuperscript{12}, tetrakis(ethoxyethoxy)calix[4]arene\textsuperscript{13} 등이 발표되었다.


II. 실험


회절반응들의 세기는 Enraf-Nonius CAD-4 Diffractometer로 얻었으며 Cu-K\(\alpha\) radiation(\(\lambda =1.5418\ \text{\AA}\))을 사용하였다. \(\theta\)가 12\(^\circ\) - 18\(^\circ\)에 있는 25개의 회절반응을 정한 단위 세포 상수를 구하기 위해서 측정하였다. 회절반응의 세기는 \(\omega/2\theta\) scan 방법을 이용하였고, \(\omega\)-scan의 범위는 (0.8 + 0.14 tan\(\theta\))였다. 이때 2\(\theta\) \(\leq\) 130\(^\circ\)까지 측정하였다. 구조의 결정과 정밀화 작업에는 \(|F_0| > 4\sigma(|F_0|)\) 범위에서의 2354 reflection이 사용되었다. Intensity의 Lorentz-polarization과는 보정하였으며, absorption이 있는 고리하지 않았다.

이 결정에 대한 crystal data는 Table 1에 요약하였다.

<table>
<thead>
<tr>
<th>Table 1. Summary of Crystal Data, Intensity Collection and Least-Squares Refinement Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula</td>
</tr>
<tr>
<td>\textbf{Mw}</td>
</tr>
<tr>
<td>space group</td>
</tr>
<tr>
<td>a, \AA</td>
</tr>
<tr>
<td>b, \AA</td>
</tr>
<tr>
<td>c, \AA</td>
</tr>
<tr>
<td>(\text{Z})</td>
</tr>
<tr>
<td>(V, \AA^3)</td>
</tr>
<tr>
<td>(\mu, \text{mm}^{-1})</td>
</tr>
<tr>
<td>density, g/cm(^3)</td>
</tr>
</tbody>
</table>
박 영 자

<table>
<thead>
<tr>
<th>radiation</th>
<th>Cu-Kα (graphite monochromator, λ = 1.5418 Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>crystal size, mm</td>
<td>0.3 × 0.3 × 0.05</td>
</tr>
<tr>
<td>cell constant determination</td>
<td>25 reflections</td>
</tr>
<tr>
<td>2θ range, deg.</td>
<td>2° &lt; 2θ &lt; 130°</td>
</tr>
<tr>
<td>scan type</td>
<td>ω/2θ scan</td>
</tr>
<tr>
<td>scan width, deg</td>
<td>0.8 + 0.14 tanθ</td>
</tr>
<tr>
<td>No. of observed reflection</td>
<td>2354</td>
</tr>
<tr>
<td>R, Rw</td>
<td>0.07, 0.19</td>
</tr>
</tbody>
</table>

### III. 구조의 해석과 정밀화

이 화합물의 구조는 모든 reflections의 구조인 자(F_0)를 규격화된 구조인자로 바꾸어 least-squares 방법을 사용하여 direct method을 적용하여 해석을 하였다. E-map에서 가장 높은 28개의 peaks로 이 화합물의 분자 반쪽의 탄소와 산소의 위치를 결정하였다. 구조의 정밀화는 SHELXL-93의 program을 사용하여 least-square method로 하였다. Isotropic thermal parameters을 모든 탄소와 산소에 적용하여 6회 정밀화를 수행하였는데, 이 때의 R값은 0.14였고, anisotropic thermal parameters을 모든 탄소와 산소에 적용하여 6회 정밀화를 수행하였을 때, R값은 0.10이었다. 이 단계에서 methyl기에는 붙은 수소를 제외한 나머지 수소 원자를 difference Fourier map에서 찾았으며, methyl기에는 붙은 수소 원자의 위치는 계산하여 정하였다. 최종 정밀화 과정에서 탄소와 산소에는 anisotropic thermal parameter을 적용하고, 수소에는 isotropic thermal parameter을 사용하여 정밀화 하였다. 최종 R값은 0.07이었고, Rw값은 0.19이었다. 최종 difference Fourier map에서 최대, 최소 peaks는 각각 0.51 eÅ⁻³, -0.33 eÅ⁻³을 나타내었다. 또한 원자산란인자는 International Tables for X-ray Crystallography의 값을 적용하였다.

원자들의 좌표들은 Table 2에 수록하였다.

<table>
<thead>
<tr>
<th>atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Ueq</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1A)</td>
<td>771 (2)</td>
<td>2508 (2)</td>
<td>403 (3)</td>
<td>0.0461 (9)</td>
</tr>
<tr>
<td>C(2A)</td>
<td>1501 (2)</td>
<td>2727 (2)</td>
<td>967 (4)</td>
<td>0.0449 (8)</td>
</tr>
<tr>
<td>C(3A)</td>
<td>1604 (2)</td>
<td>3240 (2)</td>
<td>774 (4)</td>
<td>0.0470 (9)</td>
</tr>
<tr>
<td>C(4A)</td>
<td>1023 (2)</td>
<td>3539 (2)</td>
<td>79 (4)</td>
<td>0.0455 (8)</td>
</tr>
<tr>
<td>C(5A)</td>
<td>318 (3)</td>
<td>3295 (2)</td>
<td>-478 (4)</td>
<td>0.0483 (9)</td>
</tr>
<tr>
<td>C(6A)</td>
<td>172 (2)</td>
<td>2783 (2)</td>
<td>-327 (3)</td>
<td>0.0455 (9)</td>
</tr>
<tr>
<td>C(7A)</td>
<td>-630 (3)</td>
<td>2548 (2)</td>
<td>-934 (4)</td>
<td>0.0543 (10)</td>
</tr>
<tr>
<td>C(8A)</td>
<td>1144 (2)</td>
<td>4110 (2)</td>
<td>2 (4)</td>
<td>0.0516 (9)</td>
</tr>
<tr>
<td>C(9A)</td>
<td>2056 (5)</td>
<td>4229 (3)</td>
<td>-223 (11)</td>
<td>0.127 (3)</td>
</tr>
<tr>
<td>C(10A)</td>
<td>949 (8)</td>
<td>4335 (3)</td>
<td>1274 (7)</td>
<td>0.152 (4)</td>
</tr>
<tr>
<td>C(11A)</td>
<td>615 (7)</td>
<td>4343 (3)</td>
<td>-1095 (11)</td>
<td>0.157 (4)</td>
</tr>
<tr>
<td>C(12A)</td>
<td>792 (3)</td>
<td>1632 (2)</td>
<td>-146 (5)</td>
<td>0.0578 (10)</td>
</tr>
<tr>
<td>C(13A)</td>
<td>580 (4)</td>
<td>1132 (2)</td>
<td>391 (7)</td>
<td>0.0775 (14)</td>
</tr>
<tr>
<td>C(14A)</td>
<td>634 (5)</td>
<td>703 (3)</td>
<td>-532 (11)</td>
<td>0.130 (3)</td>
</tr>
<tr>
<td>O(1A)</td>
<td>620 (2)</td>
<td>2002 (1)</td>
<td>700 (3)</td>
<td>0.0560 (7)</td>
</tr>
<tr>
<td>O(2A)</td>
<td>1090 (3)</td>
<td>1717 (1)</td>
<td>-1156 (4)</td>
<td>0.0933 (11)</td>
</tr>
<tr>
<td>C(1B)</td>
<td>1388 (2)</td>
<td>2471 (2)</td>
<td>3880 (4)</td>
<td>0.0452 (8)</td>
</tr>
<tr>
<td>C(2B)</td>
<td>1147 (2)</td>
<td>2250 (2)</td>
<td>5022 (4)</td>
<td>0.0460 (9)</td>
</tr>
<tr>
<td>C(3B)</td>
<td>1402 (2)</td>
<td>1764 (2)</td>
<td>5327 (4)</td>
<td>0.0485 (9)</td>
</tr>
<tr>
<td>C(4B)</td>
<td>1872 (2)</td>
<td>1475 (2)</td>
<td>4516 (4)</td>
<td>0.0477 (9)</td>
</tr>
<tr>
<td>C(5B)</td>
<td>2075 (2)</td>
<td>1709 (2)</td>
<td>3368 (4)</td>
<td>0.0469 (9)</td>
</tr>
<tr>
<td>C(6B)</td>
<td>1850 (2)</td>
<td>2195 (2)</td>
<td>3034 (4)</td>
<td>0.0439 (8)</td>
</tr>
<tr>
<td>C(7B)</td>
<td>2136 (2)</td>
<td>2426 (2)</td>
<td>1800 (4)</td>
<td>0.0510 (9)</td>
</tr>
<tr>
<td>C(8B)</td>
<td>2160 (3)</td>
<td>938 (2)</td>
<td>4830 (4)</td>
<td>0.0537 (10)</td>
</tr>
<tr>
<td>C(9B)</td>
<td>1897 (4)</td>
<td>757 (2)</td>
<td>6144 (6)</td>
<td>0.067 (2)</td>
</tr>
<tr>
<td>C(10B)</td>
<td>3117 (3)</td>
<td>910 (2)</td>
<td>4856 (6)</td>
<td>0.0734 (13)</td>
</tr>
<tr>
<td>C(11B)</td>
<td>1795 (4)</td>
<td>573 (2)</td>
<td>3791 (6)</td>
<td>0.0753 (13)</td>
</tr>
<tr>
<td>O(1B)</td>
<td>1168 (2)</td>
<td>2965 (1)</td>
<td>3652 (3)</td>
<td>0.0612 (8)</td>
</tr>
</tbody>
</table>

Table 2. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Thermal Parameters for Nonhydrogen Atoms of Tetra-tert-butyl-dipropionyloxy-dihydroxycalix[4]arene.

The e.s.d.'s are in parentheses.

Ueq = 1/3ΣΣ U_ii a_i a_i a_i a_j a_j a_j (Å²)

IV. 결과 및 고찰

Tetra-tert-butyl-dipropionyloxy-dihydroxycalix[4]arene의 conformation은 ORTEP program을 이용하여 그려 Figure 1에 표시하였다. 이 분자는 x=0, z=0.25 위치에, y축에 평행한 2-fold axis를 갖고 있다. 대칭조차 (-x, y, -z+0.5)를 하여 분자의 나머지 반이 얽어져서, 한 분자를 만들었다. Propionyloxy기가 붙은 phenol unit을 A, hydroxy기가 붙은 phenol unit을 B라 하고 이것을 다시 대칭조차하여 양은 phenol unit을 순서대로 A', B'이라 명명하였다.

결합길이와 결합각도는 Table 3에 나타내었다. Phenol unit에서 Csp²-Csp² 간 거리는 1.375Å에서 1.398Å의 범위 값을 가지며 평균값은 1.387Å이다. Csp²-Csp³간 거리는 1.511Å에서 1.522Å이다.

Fig. 1 a. Molecular Conformation with Atomic Numbering in Tetra-tert-butyl-dipropionyloxy-dihydroxycalix[4]arene

Fig. 1. b Molecular Conformation of Tetra-tert-butyl-dipropionyloxy-dihydroxycalix[4]arene seen from different direction
의 범위값을 가진다. 평균값은 1.518Å이다. Csp²-O간의 거리는 1.395Å(A 립), 1.367Å(B 립)이고 C=O간의 거리는 1.201Å(A 립)이다. Methylene의 탄소 C(7)과 양 옆에 있는 phenyl기의 탄소 C(6)과 C(2)와의 결합각도, C(6)-C(7)-C(2)은 각각 2개의 고리에서 117.1, 116.1°이다.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)-C(2)</td>
<td>1.395(5)</td>
<td>1.397(6)</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.381(7)</td>
<td>1.375(7)</td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.383(6)</td>
<td>1.396(6)</td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.390(5)</td>
<td>1.398(6)</td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.384(7)</td>
<td>1.370(7)</td>
</tr>
<tr>
<td>C(6)-C(7)</td>
<td>1.522(6)</td>
<td>1.516(6)</td>
</tr>
<tr>
<td>C(4)-C(8)</td>
<td>1.520(7)</td>
<td>1.518(7)</td>
</tr>
<tr>
<td>C(8)-C(9)</td>
<td>1.532(9)</td>
<td>1.529(7)</td>
</tr>
<tr>
<td>C(8)-C(10)</td>
<td>1.497(9)</td>
<td>1.537(7)</td>
</tr>
<tr>
<td>C(8)-C(11)</td>
<td>1.498(12)</td>
<td>1.528(8)</td>
</tr>
<tr>
<td>O(1)-C(1)</td>
<td>1.394(6)</td>
<td>1.367(6)</td>
</tr>
<tr>
<td>O(1)-C(12)</td>
<td>1.393(6)</td>
<td></td>
</tr>
<tr>
<td>O(2)-C(12)</td>
<td>1.201(7)</td>
<td></td>
</tr>
<tr>
<td>C(12)-C(13)</td>
<td>1.482(8)</td>
<td></td>
</tr>
<tr>
<td>C(13)-C(14)</td>
<td>1.488(11)</td>
<td></td>
</tr>
</tbody>
</table>

이 화합물의 분자구조는 Figure 1과 같이 1,3-alternate conformation을 갖으며, 4개의 tert-butyl phenyl기가 교대로 놓여 있다. 즉 이웃한 phenyl기 (A와 B)가 anti-orientation을 갖는다.

Selected torsion angle은 Table 4에 정리하였다. Propionylxoy기 주위의 각도는 C(13)-C(12)-O(1)-C(1) = 179.9°로, 180°에 가깝고 O(2)-C(12)-C(13)-C(14) = -9.6°로 propionylxoy기는 거의 평면 구조를 가지고 있다. Propionylxoy기와 benzene 고리와 이루는 각도는 82.3°로 서로 수직을 이루고 있다. 분자내 2-fold axis로 관계되어 있는 서로 마주보고 있는 두개의 propionylxoy기가 cavity에서 어떻게 배열되어 있는지를 알아 보기 위해서 phenol unit A와 A'.

Table 4. Selected torsion angles (°) for Tetra tert-butylicalix[4]arene.

The e.s.d.'s are in parentheses.

<table>
<thead>
<tr>
<th></th>
<th>torsion angle (°)</th>
<th>e.s.d. (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(6A)-C(1A)-C(2A)-C(7B)</td>
<td>177,9 (6)</td>
<td></td>
</tr>
<tr>
<td>C(1A)-C(2A)-C(7B)-C(6B)</td>
<td>-61,9 (9)</td>
<td></td>
</tr>
<tr>
<td>C(2A)-C(7B)-C(6B)-C(1B)</td>
<td>-45,9 (4)</td>
<td></td>
</tr>
<tr>
<td>C(7B)-C(6B)-C(1B)-C(2B)</td>
<td>-178,8 (6)</td>
<td></td>
</tr>
<tr>
<td>C(6B)-C(1B)-C(2B)-C(7A')</td>
<td>-179,0 (6)</td>
<td></td>
</tr>
<tr>
<td>C(1B)-C(2B)-C(7A')-C(6A')</td>
<td>53,6 (4)</td>
<td></td>
</tr>
<tr>
<td>C(2B)-C(7A')-C(6A')-C(1A')</td>
<td>52,4 (4)</td>
<td></td>
</tr>
<tr>
<td>C(7A')-C(6A')-C(1A')-C(2A')</td>
<td>-179,3 (6)</td>
<td></td>
</tr>
<tr>
<td>O(1A)-C(12A)-C(13A)-C(14A)</td>
<td>172,1 (7)</td>
<td></td>
</tr>
<tr>
<td>O(2A)-C(12A)-C(13A)-C(14A)</td>
<td>-96,6 (6)</td>
<td></td>
</tr>
<tr>
<td>C(13A)-C(12A)-O(1A)-C(1A)</td>
<td>179,9 (6)</td>
<td></td>
</tr>
<tr>
<td>C(2A)-C(1A)-O(1A)-C(12A)</td>
<td>-100,0 (5)</td>
<td></td>
</tr>
</tbody>
</table>


<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring A</td>
<td>100.8</td>
<td>100.4</td>
<td>104.4</td>
</tr>
<tr>
<td>Ring B</td>
<td>69.8</td>
<td>93.5</td>
<td>75.7</td>
</tr>
<tr>
<td>Ring C (or A')</td>
<td>79.2</td>
<td>106.1</td>
<td>102.2</td>
</tr>
<tr>
<td>Ring D (or B')</td>
<td>110.2</td>
<td>101.4</td>
<td>76.3</td>
</tr>
</tbody>
</table>
Figure 2는 b projection으로 그린 분자 packing diagram을 나타낸 것으로 2-fold axis가 분자 가운데에 있는 것을 보여준다. Intermolecular distances가 가장 짧은 경계는 C(11A)…C(11A′)(x, y, z-1)= 3.389Å이다. Tetra-tert-butyl-dipropionyloxy-dihydroxycalix[4]arene 결정에서는 van der Waals force에 의해서 molecular packing이 이루어지고 있다.

감사의 글

이 연구는 1995년도 숙명여자대학교 연구비 지원에 의하여 연구되었으며 이에 감사드립니다.

참고 문헌


Fig. 2 The Crystal Structure of Tetra-tert-butyl-dipropionyloxy-dihydroxycalix[4]arene in projection down b-axis.
15. Sheldrick, G. M. “SHELX-93, Program for Crystal Structure Determination”. Institute Fur Anorganische Chemie, Der Universität G ttingen, Germany, 1993