<AFE=E> The Journal of Optical Society of Korea (Korean Edition) Volume 7, Number 3, September 1996

Reflection of a Gaussian Beam from a
Planar Dielectric Interface

Yeon H. Lee
Electronics Department, Sung Kyun Kwan University, Suwon, 440-746, Korea

(Received: February 12 1996)

When a Gaussian beam is incident to a planar dielectric interface at an angle other than Brewster
angle or the critical angle of total reflection, we derive the six nonspecular effects of rotation, lateral
shift, focal shift, Rayleigh length change, magnitude and phase changes in the complex amplitude
of the reflected beam simultaneously by taking account of the boundary condition. In the derivation
we assume a Gaussian beam of fundamental mode to emerge from the interface and then match
at the interface the constant, linear, and quadratic variations of the amplitude and phase of the reflected
beam with those of the incident beam multiplied by the reflection coefficient. Qur calculation shows
that the six nonspecular effects can result from a linear variation of the natural logarithm of the

reflection coefficient at the interface.

I. INTRODUCTION

When a Gaussian beam with curved phase front is
incident to a planar dielectric interface, the incident
angle of the phase front may vary as a function of
position at the interface. Since Fresnel formula of ref-
lection varies rapidly near the critical angle of total
reflection,™ the reflection coefficient at the interface
may vary rapidly as a function of position in this case.
Since, in general, the reflection coefficient is given by
a complex number, it may cause changes in the ampli-
tude and phase of the beam reflected from the inter-
face.

It has been shown by many researchers that the
changes can make the reflected beam appear not only
to be shifted in the lateral direction as in Goos-
Hanchen shift,*! but also to be rotated,®*! shifted in
the longitudinal direction,!™ modified in the beam
waist,'”) changed in the magnitude and phase of the
complex amplitude.!® In most of the previous studies
angular spectrum analysis has been widely employed
in predicting consequences of the changes in the amp-
litude and phase of the reflected beam. In this case,
an incident Gaussian beam is represented by a super-
position integral of angular spectra. Then the reflected
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beam is reconstructed from the angular spectra of the
incident beam multiplied by the complex reflection
coefficient. Improvements in the predictions have been
made in the limit where a ratio of beam waist to wave-
length is not large.””? However, in this case, the reflec-
ted beam is reconstructed from the angular spectra
by ignoring the longitudinal amplitude and phase cha-
nges of the incident and reflected Gaussian beams.
Since the nonspecular effects are very small in ge-
neral, there are many difficulties in experiments. Seve-
ral experiments however have been performed in mic-
rowave region where the effects appear relatively la-
rge!' And despite the difficulties some experiments
have been done in optical wavelength region.['"12! Ho-
wever, in these experiments, the lateral shift and the
rotation of the reflected beam have been observed as
a single event due to the experimental difficulties.
In this paper, we employ a new method other than
the angular spectrum analysis. We first take the natural
logarithm of Fresnel formula of reflection and then
expand it in Taylor series at the interface assuming
the beam incident angle to be other than Brewster
and the critical angles. Next, we obtain the amplitude
and phase distributions of the electric field at the inte-
rface from the electric field of the incident beam and
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the complex reflection coefficient. To solve this boun-
dary value problem, we assume, emerging from the
interface is a Gaussian beam of fundamental mode that
is rotated relative to the reflection direction predicted
by geometrical optics, shifted in the transverse and
longitudinal directions, changed in its Rayleigh length,
and changed in the magnitude and phase of its comp-
lex amplitude. By matching the constant, linear, and
quadratic variations of both amplitude and phase of
the reflected beam at the interface with the given bou-
ndary values we obtain the six nonspecular effects si-

multaneously.

II. THE ELECTRIC FIELD DISTRIBUTION AT
THE DIELECTRIC INTERFACE

Fig. 1 shows three coordinate systems (x, 2), (& 7).
and (&', n"). Here (x, 2) coordinates are for a planar
dielectric interface, which is represented by xy plane.
To the interface a Gaussian beam of fundamental mode
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Reflection Gaussian
Beam

Geometrical

Reflection

Fig. 1. A Gaussian beam is incident on a dielectric
interface, which is represented by xy plane.
A unit vector f represents the reflection direc-
tion predicted by geometrical optics. A unit ve-
ctor &' represents the propagation direction
of the beam reflected from the interface. (',
n") coordinates can be obtained from (& n)
coordinates by rotating it by A8 at {=¢& and
then by displacing it in the transverse and lo-
ngitudinal directions by AL and AF, respecti-
vely. The origin of (£ n) coordinates correspo-
nds to the location of the mirror image of the
incident beam waist.

is assumed to incident at an angle of 6 relative to
the surface normal, or z-axis. (& 7) coordinates are
to represent a simple geometrical reflection of the inci-
dent beam. Since there is nothing changed in a beam
after the geometrical reflection, except for its propaga-
tion direction, from the incident beam, we assume at
the interface that the scalar-electric-field distribution
of a beam propagating along :f axis can be obtained
from that of the incident beam multiplied by the refle-
ction coefficient of unity. It is assumed to be unity
for simplicity in calculation. (§’, n’) coordinates are
for nonspecular reflection of the incident beam in
which the reflection coefficient is assumed to vary as
a function of position at the interface.

The incident Gaussian beam is assumed to have
propagated a distance & from its beam waist before
it reaches the interface. If the reflection coefficient,
for the curved phase front of the incident beam, is
assumed to be uniform at the interface (unity for simp-
licity), the incident beam should reflect in the direction
predicted by geometrical optics and should have its
beam waist at the distance of & from the interface
in —é direction. In this case the electric field of the
beam is given in (£ n) coordinates as

£ (& n):%E,,exp[izez%2 —ln(1+ié >+ik§]

exp(—iwt)+cc 4Y]

Here gr represents that the beam propagates in the
direction predicted by geometrical optics. E, is complex
amplitude. k is wavenumber given by 27#,/A with ref-
ractive index #, and wavelength A ¢ is Gaussian beam
parameter given by &—i& with Rayleigh length & o
is angular frequency. c.c represents complex conjugate.

Fig. 2 shows a Gaussian beam propagating along é’
axis after reflecting from the dielectric interface, where
the reflection coefficient is assumed for a moment to
be unity, and its phase front at a position {=&. As
can be seen from the figure the interface plane is rep-
resented in (£ 1) coordinates by the equation n+(¢
— &)cot@=0. Therefore, the electric field distribution
of the beam at the interface can be obtained from (1)
by replacing n with —(&—&)cotf. Since the reflection
coefficient is assumed to be unity in the calculation,
the derived electric field should be the same with the
electric field distribution of the incident beam at the
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Fig. 2. In (§ 7n) coordinates the dielectric interface
is represented by the equation n= —({—§)
cotf. When the incident Gaussian beam is as-
sumed to follow the path of the geometrical
reflection, the propagation direction of its
phase front at a point of the dielectric interface
will make an angle of ¢ relative to the surface
normal.

interface. Therefore,

1 k
E (x)= EE,, exp[iz (&~ &) eot? B

- ln(l +i~§ >+ ik-f]exp(—iwt)-%c.c.
)]

In the equation the subscript i stands for incident
beam and the argument x is to represent the electric
field distribution at the interface. The electric field can
also be given by (x, z) coordinates after the coordinate
transformation; (&~ &)= —x sin 8 and n=x cosf (see
Fig. 1). Since, however, the transformation can be done
at any later time of our convenience, it will be ignored
for the moment.

When the reflection coefficient varies as a function
of position at the dielectric interface, we can assume
that the electric field distribution of the reflected beam
at the interface is given by that of the incident beam
multiplied by the reflection coefficient p(x);

Enr(x)=p(x) E(x). 3

Here the subscript nsr represents nonspecular reflec-
tion and the argument x represents that the correspon-
ding functional values are taken at the interface. For
simplicity in calculation we ignore the variations of

both the electric field and the reflection coefficient in
y direction.

IMII. THE NONSPECULAR REFLECTION AT
THE INTERFACE

It can be seen from Fig. 1 that the coordinate system
(&', n') can be obtained from (¢, n) coordinate system
by rotating it about a point (&, O) by an angle of A8
followed by translations of AZ and AF in the transve-
rse and longitudinal directions, respectively., Therefore

(&', n") coordinates are given in terms of (& 1) coordi-

nates as
E'=&+cos(AB)E— &) —sin(A ) n— AF, )
n'=sin{AO)NE— &) +cos(A8) n— AL %)

Here we assume ¢’ axis to represent the propagation
direction of the beam reflected from the dielectric in-
terface where the reflection coefficient varies as a co-
mplex function of position. In other words, when the
electric field distribution at the interface is given as
in (3), we assume, emerging from the interface is a
Gaussian beam of fundamental mode that is rotated
by A& relative to the direction g‘”predicted by geomet-
rical optics, displaced by AL and AF in the transverse
and longitudinal directions, changed in the Rayleigh
length by A&, and changed in the magnitude and
phase of the complex amplitude. By so doing we can
avoid solving the wave equation with complicated bou-
ndary conditions. It can be shown that the six opera-
tions on a Gaussian beam still make the beam a solu-
tion of the wave equation. Therefore the beam after
the nonspecular reflection can be assumed to be of
the form of

kzz:z —1n(1+i~§0,7>+ik 5']

exp(—iwt)+c.c 6)

1
€. (& n)= -Z—E,,' exp[i

In the equation E,’ represents the changed magnitude
and phase in the complex amplitude, &' the changed
Rayleigh length, £’ the changed beam direction and
position as can be seen from (4) and (5), and ¢' the
changed Gaussian beam parameter given by ¢'—i ¢,

Since the electric field (6) is assumed to be a solu-
tion of the wave equation after the nonspecular reflec-
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tion, what we need next is to consider boundary condi-
tions. When A6 is much smaller than unity, sin (4 8)
and cos (A8) in (4) and (5) can be approximated by
A6 and unity, respectively. After inserting (4) and (5)
into (6) we expand all the primed quantities of (6)
in Taylor series and collect the zero and the first order
terms. It is noted in this case that the zero order terms
are given by (£ n) coordinates and the first order te-
rms are given by the six quantities representing the
six nonspecular effects: rotation A6, lateral shift AL,
focal shift AF change in Rayleigh length A &, magni-
tude and phase changes AE, in the complex amplitude.
For simplicity in calculation AE, is rewritten as
exp(A,+14,). Then the electric field distribution after
the nonspecular reflection is obtained at the interface

as
£, ()= %Euexp {z% (&E— &) cot? 8
71n<1+z’§>+ik 3
exof ~i7 [ (£~ exa0 - ALJE- Eeore]
. exp{iziqz[ —(ABNE— &E)cotf+ AF+i(A é,)]

(&~ &) cot? 0}
. exp{(% - ik)[ — (A G & &)cotb+ AF]

+ [z% + é](A &t
-expd —iwt)+cc. )

In the equation replacements of ¢ with (& —xsinf)
has been postponed for some later time. The first ex-
ponential term results from the zero order terms in
Taylor series and describes the amplitude and phase
distributions at the interface in the absence of any no-
nspecular effect. The second exponential term results
from the perturbation in 7 in (6). The third exponential
term results from the perturbation in ¢ and the fourth
term from the perturbations in & and. £, in (6).
The boundary condition requires that the electric
field of the reflected beam at the interface (7) should
be the same with that of the incident beam multiplied
by the reflection coefficient as in (3). Here we assume
that the complex reflection coefficient p(x) can be re-

written as exp[In p(x)] and that In p(x) can be expan-

ded in Taylor series. We note that this condition can

be satisfied at all the incident angle except for Brews-

ter angle and the critical angle of total reflection.
dp

In p(x)=In p(0)+l —_—
P

‘x=R+1Lx 8
dx alx=0 ( )

To match the boundary condition (2), (7) and (8) are
inserted into (3) and then (&—&) is replaced by
—xsind. In this case the Gaussian beam parameter q
is rewritten as (&—&)+(§—1E).

Next we collect terms with the same power of x,
which are terms of constant, x and x%. Since we are
dealing with complex numbers, the real and imaginary
parts of the terms with the same power of x should
satisfy the equality of (3) independently. Therefore we
obtain six simultaneous equations with six unknowns.
After a lengthy algebra we obtain the exact solutions
as

A= —mL,§+L,(§+—?E’—?Z—Q—)], ©

Ac= kzs'"" [L&+L &, (10)
ap—-200 2oin Al an
2tan29 1
- - 2 2
AL Dc 9[L<§1+fo s
2tan’ @ 2tz<m2 0+1
i )L . | a
o 2sin8 i
A=R, kcos? @ L, F (13
A,:R,-+2L“"[L kE-D—Lk &, (14)

Here the subscripts 7 and ¢ represent real and imagi-
nary parts, respectively. It should be noted here that
no term is assumed to be small and neglected in sol-
ving the six simultaneous equations.

IV. THE REFLECTION COEFFICIENT AT THE
DIELECTRIC INTERFACE

Since the Gaussian beam incident to the dielectric
interface has a curved phase front, the incident angle
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of the phase front varies at the interface. When the
reflection coefficient is given as a function of incident
angle, it can be converted into a function of position
as follows. First, we obtain propagation directions of
different points in the phase front. These points will
then correspond to different points at the interface,
which will have different values of reflection coefficient
due to the different incident angle of the phase front.
Since the electric field (1) is obtained by assuming
the reflection coefficient of unity, the reflection angle
of the phase front at a given point of the interface
should be the same with the corresponding incident
angle of the phase front. Therefore, at the interface,
the variation of the incident angle of the phase front
can be obtained from (1) by taking gradient of its phase
term. When the condition 72W,? > A is satisfied, where
W s the beam waist, the incident (or reflection) angle
¢ of the phase front (see Fig. 2) can be obtained at
a point (x, 0) of the interface as

(&—x sin@)xcosh

0= 8- [(&—xsinf) + £2]

(15)

Here 0 is the incident angle of the Gaussian beam
measured between the beam center and the surface.
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Fig. 3. The lateral shift AL is plotted versus the inci-
dent angle 6 in degree for refractive indices
n1=1L15, n;=10, beam waist w,=1 mm, and
wavelength 1=632.8 nm. In this case Brewster
angle 03=233.6899° (0.58800 radian) and the
critical angle of total reflection 8 =41.8104°
(0.72973 radian). Solid line represents sr-polari-
zed beam while dotted line o-polarized beam.
The plot stops when the incident angle beco-
mes closer to Brewster angle or the critical
angle by less than 0.0573° (1 mrad).

normal, or z-axis. The angle ¢ is also measured with
respect to the surface normal.

Using Fresnel formula of p(¢) and the chain rule
dp(¢)/de=(dp(9)/do)do/dx) we obtain the real and
imaginary parts of L for o polarization, where the elec-

tric field is perpendicular to the plane of incidence,

as

L=-— 2n? cosB.)si.nB ' & _ 16)
Vnlt—nlsin? 6 (&2+ &)

2n,cosfsind & an

L= =
Vnildsint8—n? (& +ED

Similarly for 7 polarization, where the electric field
is in the plane of incidence, we obtain

2nn,* cosf sin@ 1
VR nrsind [+ ndsin’ 0 n?]
&
(&+E&H’

L=
(18)

_ 2nym) cos@sinf 1

ni%sin® 0—n,’  [(n?+n,2)sin® 8—nst)
&

— 19
(&2 +&H 49

In the equations the refractive index 7, is assumed
to be larger than », The square root in the denomina-
tor of (16)-(19) becomes zero at the critical angle of
total reflection and the bracket in the denominator of
(18)-(19) becomes zero at Brewster angle. This means
blowing up of L, and L, at these points. It should be
noted that, at an incident angle less than the critical
angle of total reflection, L;=0 and L, is given by (16)
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Fig. 4. The rotation A6 versus the incident angle 6.
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Fig. 5. The focal shift AF versus the incident angle
6.
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Fig. 6. The change in Rayleigh length A& versus the
incident angle 6.
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Fig. 7. The exponential of (4,—R,) represents a cha-
nge in the beam amplitude from that predicted
in geometrical reflection.

or (18) depending on the beam polarization. Similarly,
at an incident angle larger than the critical angle, L,=0
and L, is given by (17) or (19) depending on the beam
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Fig. 8. The phase change of the complex amplitude
versus the incident angle 6.

polarization. ]
The six nonspecular effects are plotted in Fig. 3-Fig.
8 as functions of the incident angle # in degree. In
the plots a Gaussian beam of 632.8 nm is assumed
to have propagated a distance of & from its beam waist
before it reaches the dielectric interface, which means
&=£&. Also assumed in the plots are the beam waist
w,=1 mm, refractive indices n,=15 and #,=10.

V. CONCLUSION

When a Gaussian beam of fundamental mode is inci-
dent at a dielectric interface, the different propagation
direction of the phase front at the interface is conver-
ted into different reflection coefficient by Fresnel for-
mula. Then the electric field distribution of the reflec-
ted beam at the interface is assumed to be given by
that of the incident beam multiplied by the complex
reflection coefficient varying as a function of position.
For this boundary value problem we assume a Gaus-
sian beam of fundamental mode to emerge from the
interface. In this case the emerging beam is assumed
to contain the six nonspecular effects. By matching
the electric field distribution of the emerging beam
with the boundary value we obtain the exact values
of the six nonspecular effects simultaneously. Qur cal-
culation shows that a linear variation of In p(x) at the
interface produces all the six nonspecular effects at
the same time.

It appears that our results (9)-(14) are different from
those of Falco and Tamir'® in two respects. First, in
our derivations, there is no ignorance of the longitudi-
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nal amplitude and phase changes in the expression
of the incident and reflected Gaussian beams. There-
fore, our results are given as functions of & which
represents the distance between the incident beam
waist and the dielectric interface. Second, our results
are given as functions of the incident angle 8 in addi-
tion to the angular dependence involved in the reflec-
tion coefficient, L, and L.

Since, in our calculation, the complex reflection coef-
ficient p(x) is rewritten as exp[In p(x)] as in (8), the
calculation result is good for all values of the incident
angle except for the Brewster angle and the critical
angle of total reflection, where exp[ln p(x)] diverges.
In the figures drawing has stopped when the incident
angle is closer to the Brewster or critical angle by
less than 0.001 radian (or 0.0573 degree). Therefore
the figures show that the nonspecular effects diverge
faster near the Brewster angle than near the critical
angle.

We believe that the divergence of our result at the
Brewster angle results from the fact that a Gaussian
beam of fundamental order is assumed to emerge from
the interface in our calculation even if higher order
Gaussian beams may be excited in this case. More
study is being done and its result is planned to be
published elsewhere.
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