Adenosine를 함유한 심장지역의 심근보호 효과

이 호철*, 정태은*, 이동협*, 이정철*, 한승세*, 김규태**, 이광윤***, 권오철***

Abstract=

Protective Effects of Adenosine-enriched Cardioplegic Solution in Ischemic Myocardium

Ho Cheol Lee, M.D.*, Tae Eun Jung M.D.*, Dong Hyun Lee, M.D.*, Jung Cheul Lee, M.D.*, Sung Sae Han, M.D.*, Kyu Tae Kim, M.D.*, Kwang Youn Lee, M.D.*, Oh Cheul Kwoun, M.D.*

Ischemic myocardial damage is inevitable to cardiac surgery. Myocardial damage after initiation of reperfusion through the coronary arteries is one of the most important determinants of a successful surgery. Adenosine is a potent vasodilator, and is also known to induce rapid cardioplegic arrest by its property of antagonizing cardiac calcium channels and activating the potassium channel. Thus, we initiated this study with adenosine to improve postischemic recovery in the isolated rat heart. We tested the hypothesis that adenosine could be more effective than potassium in inducing rapid cardiac arrest and enhancing postischemic hemodynamic recovery. Isolated rat hearts, connected to the Langendorff apparatus, were perfused with Krebs-Henseleit buffer and all hearts were subjected to arrest for 60 minutes. Three groups of hearts were studied according to the composition of cardioplegic solutions: Group A (n=10), adenosine 10mmol/L+potassium free modified St. Thomas cardioplegia; Group B (n=10), adenosine 400mol/L+St. Thomas cardioplegia; Group C(control,n=10), St. Thomas cardioplegia. Adenosine-treated groups (group A & B) resulted in more rapid cardiac arrest than control group (C) (p<0.01). There was greater improvement in recovery of coronary blood flow at 20 and 30 minutes of reperfusion in group A and at 20 minutes in group B when compared with control group (p<0.01). Recovery of systolic blood pressure at 10 minutes after reperfusion in group A and B was significantly superior to that in group C (p<0.01). Recovery of dp/dt at 10 minute after reperfusion in group A was also significantly superior to group C (p<0.05). Group A and B showed better recovery rates than control group in aortic blood flow, cardiac output, and heart rate, but there were no statistical differences. CPK levels of coronary flow in group A were significantly low (p<0.01). We concluded that adenosine-enriched cardioplegic solutions have better effects on rapid cardiac arrest and postischemic recovery when compared with potassium cardioplegia.

Key words: 1. Adenosine triphosphate
2. Reperfusion Injury
3. Myocardial Protection
4. Cardioplegic solutions

* 영남대학교 의과대학 홍부의과학과
* Department of Thoracic and Cardiovascular Surgery, College of Medicine, Yeungnam University
** 경북대학교 의과대학 홍부의과학과
** Department of Thoracic and Cardiovascular Surgery, College of Medicine, Kyungpook National University
*** 영남대학교 의과대학 약리학과
*** Department of Pharmacology, College of Medicine, Yeungnam University

본 논문은 1993년도 제25차 추계 홍부의과학대회에서 구연되었음
논문접수일: 1995년 8월 1일, 심사통과일: 1995년 10월 10일
통신저자: 이호철, (706-030) 대구광역시 남구 대명동 317-1, Tel. (053) 620-3515, Fax. (053) 626-8660

-199-
서 론

심장수술에 있어서 허혈성 심정지지가 거의 필연적인 과정이지만, 이로 인한 심근의 손상을 술 후의 염증 및 사망의 주 원인으로 심장수술의 성패를 결정하는 가장 중요한 요소 중 하나이다. 그동안 허혈성 심정지 중 심근을 보호하는 여러 가지 방법들이 연구, 개발되어 왔음에도 불구하고 허혈성 손상은 여전히 어려운 문제로 남아있다. 허혈로 인한 심근손상은 술 후 심장으로의 관류가 재개될 때 심근의 미사적 음파를 초래함으로써 심장에 형형적, 기능적, 그리고 대사적인 장애를 일으키게 된다. 즉, 심근 손상의 결과로 심근의 부종, 세포내 칼슘 축적, 글로우지연 (ATP) 및 당인(glycogen)의 고갈, 그리고 심근의 산소 및 기질의 이용능력저하 등의 현상이 나타나고 결국 혈액학적인 수행능력이 감소하게 되는 것이다.2-6 세관류 손상을 예방하는 측면에서 볼 때, 허혈-재관류로 이어지는 기간동안 적절한 대사균형을 이루는 것이 심근보호를 증진시키는데 필수적이며, 특히 ATP를 보존하는 것이 심근보호의 주 목표가 되어왔다. ATP는 세포의 안정성과 기능에 큰 영향을 미치며 심장수술 후 ATP재복이 되지 않는다던 것은 비교적 낙소양상을 의미한다는 것이다.

Adenosine은 강력한 혈관확장제로서 칼슘통로(calcium channel)에 결합하고 칼슘통로(potassium channel)를 활성화시키는 기능을 가진다. 따라서 동반 및 방실결점(SA & AV node)과 심근의 수축력을 엄세시키고, 칼슘의 세포막 통과를 축소시켜 진부 심장기능을 유도함으로써 심근 내의 ATP 보존에 도움을 줄 수 있게된다.7-11 아울러 허혈성 심장지질 제한적으로 발생하는 AMP, adenosine의 이화 작용의 결과로 ATP의 생성이 원활하지 않게 되는데, 이때 ATP의 정량적절한 adenosine이 공급되면 ATP의 생성에 매우 유리할 것으로 생각된다.

저자는 심장 수술에 널리 사용되고 있는 고농도 칼슘의 St. Thomas 심정지액, 여기에 고농도의 adenosine(400 mmol/L)을 첨가한 심정지액, 그리고 칼슘을 배제한 St. Thomas 심정지액에 고농도의 adenosine(10 mmol/L)을 첨가한 심정지액들을 사용하여, 첨예한 adenosine을 함유하는 심정지액이 기존의 칼슘 심정지액에 비해서 얼마나 벌리 심정지를 시킬 수 있는가? 또한, adenosine 함유 심정지액으로 심정지를 유발시킨 심장의 심장기능의 회복면에서 유리한 점이 있는가? 이를, 먼저 adenosine의 효과가 있다면 칼슘을 함유하고 있는 기존의 심정지액에 adenosine을 첨가한 결과, 심정지액에서 칼슘을 배제하고 adenosine만 단독으로 첨가하여 사용한 것 중 어느 것이 유리한가를 알아보기 위해 본 실험을 실시하였다.

연구재료 및 방법

1. 연구재료

Adenosine은 Sigma사(St. Louis, MO, USA)제품을 사용하였고, St. Thomas 심정지액(Table 1) 및 Krebs-Henseleit (KH) 완충액은 Sigma사에서 구입한 성분으로 제조하였다.

2. 실험방법

본 실험에서는 350~450g의 Sprague-Dawley계 원쥐를 사용하였고, 이들에 사용한 심정지액의 종류에 따라 St. Thomas 심정지액에서 칼슘을 배제하고 고농도의 adenosine(10 mmol/L)를 첨가한 심정지액을 사용한 군(A군), 칼슘을 함유하고 있는 St. Thomas 심정지액에 저농도의 adenosine(400 mmol/L)를 첨가한 심정지액을 사용한 군(B군), 그리고 대조군으로 adenosine의 첨가를 하지 않은 기존의 St. Thomas심정지액을 사용한 군(C군)의 3군으로 나누어 각각 10마리씩 실험을 하였다. 이들에게 먼저 혈관 100IU/100g를 복강 주사하고, 30분 후 공장 dap을 상태에서 즉시 양쪽 폐장과 심장을 적출하여 약 4℃의 KH 완충액에 담근 후, 폐장 및 주위조직을 제거하고 대동맥에 삽관을 하였다. 삽관된 대동맥을 Langendorff 장치에 연결하여 80cmH_{2}O의 압으로 즉시 관류하였고, 심장이 비정상적인 박동을 하고 있는 동안 최심방에 삽관을 하고, 대동맥에 절개를 가한 후 순환장치에 연결하였다. 이때 사용한 관류액은 pH 7.4의 KH 완충액으로, 구성은 NaCl 118 mmol/L, KCl 4.7 mmol/L, CaCl_{2} 2.5 mmol/L, KH_{2}PO_{4} 1.2 mmol/L, MgSO_{4} 1.2mmol/L, NaHCO_{3} 25mmol/L, 그리고 D-glucose 11mmol/L이다. 관류액의 온도는 37℃로 유지하였고 95% O_{2}와 5% CO_{2}의 혼합가스를 동분시키서 사용하였으며, 심장은 이온주에 가두어 온도유지를 하였다. 15분간 비작

<table>
<thead>
<tr>
<th>Table 1. Composition of the modified St. Thomas Hospital cardioplegic solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
</tr>
<tr>
<td>--------------------</td>
</tr>
<tr>
<td>Sodium chloride</td>
</tr>
<tr>
<td>Potassium chloride</td>
</tr>
<tr>
<td>Calcium chloride</td>
</tr>
<tr>
<td>Sodium bicarbonate</td>
</tr>
<tr>
<td>pH</td>
</tr>
<tr>
<td>Osmolarity (mOsm/kg H_{2}O)</td>
</tr>
</tbody>
</table>
입성 박동 후에 작업성으로 전환시켜 다시 15분간 유지한 후, 대동맥관류를 차단하고 50cmH₂O의 압력으로 2분간에 걸쳐서 4℃의 심정지액을 주입하여 심정지를 유발시켰다. 이때 심장은 4℃ 생리시험수에 담구어서 저온상태를 유지하였으며, 30분이 경과 후 다시 심정지액을 주입하여 30분간 심정지를 연장시켰다. 이때 A군에서는 고농도의 adenosine에 의한 심장의 부작용을 방지하기 위해서 심정지 후 두어 회 주온의 KH 용액 소량을 판상동맥에 관류시켜 헹구어주었다. 총 약 1시간의 심정지 후 KH 완충액을 이용한 관류를 하여서 15분간의 비작업성 심박동을 시킨 후, 다시 작업성으로 전환시켜 30분간 표본을 채취하고 관찰한 후 관류를 종결하였다(Fig. 1).

3. 성적측정

각 군간의 비교를 위한 성적으로는 심정지에 주입에 따른 심정지 유발시기, 재관류 중의 심박수, 판상동맥 관류량, 대동맥 관류량, 심박출량, 수축기동맥압, dp/dt, 재관류시의 CPK치, 그리고 마지막으로 재관류를 종결한 심장의 수분함유비 등을 측정하였다.

이 중 혈액학적 요소들은 심정지 5분간의 작업성박동 중에 먼저 대조군을 측정해주고, 재관류 후 작업성박동의 1분, 10분, 20분, 그리고 30분에 각각을 측정하여 심정지전의 수치에 대한 회복율을 구하여 서로 비교하였다. 심정지 유발시기는 심정지 약후 주입 후 완전한 심정지가 일어난 때 까지 시간을 측정하였고, 심박수, 수축기동맥압 그리고 dp/dt의 측정은에서는 Narco Biosystem사의 physiological 모델을 이용하여 심박동을 기록하였다. 판상동맥 및 대동맥의 관류량은 1분 동안 판상동맥 및 대동맥을 통하여 배출되는 관류액과 산소용량을 구하였다. 심박출량은 판상동맥 및 대동맥의 관류량을 합산하여 계산하였다. CPK치 역시 재관류 후 작업성박동의 1분, 10분, 20분 그리고 30분에 각각을 1분간의 판상동맥 관류액을 채취하여 측정하였다. 심장의 수분함유비는 심장을 꿰끔한 후의 wet 심장의 무게를 측정한 후, 이것을 100℃에서 24시간동안 건조시킨 다음 무게를 측정하여 (wet weight-dry weight)/dry weight의 백분율로 나타내었다.

4. 결과 분석

각군간의 비교는 ANOVA test를 거친 후 Scheffe test를 이용하여 A, B군과 C군(대조군)의 동계학적 유의성을 검정하였다.
결과

1. 심장지역 투여 후 심장지역의 시간

대조군(C군)에서 10.4 ± 4.3초의 비교적 긴 시간이 소요된 반면 A군은 4.2 ± 1.2초로 가장 빨랐고, B군은 7.1 ± 2.0초가 걸려서 adenosine군(A군 및 B군)이 대조군에 비해 심장지역 유발시간이 빨랐다. A, B군과 대조군 사이에는 통계학적인 유의성이 있었다(\(p<0.01\)).

2. 심박동수

심박동수의 최고는 A군에서 재판류 20분째 99.6bmp, B군에서는 30분째 100.3bmp, 그리고 대조군에서는 20분째 94.9bmp의 최고 회복율을 나타내어, adenosine군이 대조군에 비해서 회복정도가 높았으나 통계학적인 의의는 없었다(Table 2).

3. 관상동맥관류량

관상동맥관류량은 전 군에서 재판류 10분째 가장 높은 회복율을 보였고 이 후에는 차차 감소하는 경향을 보였다. A군에서는 재판류 20분째 와 30분째, B군에서는 재판류 20분째의 회복율이 대조군에 비해서 유의하게 높았다(\(p<0.01\)) (Table 3 및 Fig. 2).

4. 대동맥관류량

대동맥관류량은 A군과 대조군에서 재판류 10분째 각각

5. 심박출량

전 군에 걸쳐 재판류 10분째 각각 84%, 84% 그리고 75%의 가장 높은 심박출량을 보였으나 각 군 간의 유의한 차이는 없었다(Table 4).

6. 수축기동맥압

전 군에 걸쳐 재판류 10분째 각각 86.7%, 90.7% 그리고 82.8%의 가장 높은 회복율을 보였으며 이 후 거의 비슷한 수준의 회복율을 보였다. A군과 B군이 재판류 10분째 대조군에 비해서 유의하게 높았다(\(p<0.01\)) (Table 6 및 Fig. 3).

7. dp/dt

수축기 동맥압의 시간에 따른 순간적인 변화를 나타내
Table 7. Percent recovery of dp/dt

<table>
<thead>
<tr>
<th>Group</th>
<th>Pre-arrest (ml/min)</th>
<th>Percent recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reperfusion 1 min</td>
<td>10 min</td>
</tr>
<tr>
<td>A</td>
<td>1.880 ± 256.76.0</td>
<td>19.4 ± 92.2</td>
</tr>
<tr>
<td>B</td>
<td>1.935 ± 273.71.4</td>
<td>10.8 ± 88.8</td>
</tr>
<tr>
<td>C</td>
<td>1.908 ± 269.67.0</td>
<td>7.5 ± 75.1</td>
</tr>
</tbody>
</table>

*: p<0.05 versus group C.

Table 8. Changes of CPK during reperfusion (IU/L)

<table>
<thead>
<tr>
<th>Group</th>
<th>Reperfusion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 min</td>
</tr>
<tr>
<td>A</td>
<td>7.9 ± 3.4</td>
</tr>
<tr>
<td>B</td>
<td>7.1 ± 2.2</td>
</tr>
<tr>
<td>C</td>
<td>8.7 ± 1.6</td>
</tr>
</tbody>
</table>

*: p<0.01 versus group C.

것 dp/dt는 A군에서 재판류 10분째 92.2%의 가장 높은 회복을 나타내었고, B군과 C군에서는 20분째 각각 89.2%와 79.5%의 중간 회복율을 나타내었다. adenosine 근에서 대조 군에 비해 첫반적으로 높은 회복율이 나타났으나, A군의 10분에서의 통계학적으로 유의한 차이가 있었다(p<0.05) (Table 7 및 Fig. 4).

8. 재판류동안의 CPK치 변화

A군에서 재판류 10분, 20분, 30분째 대조군의 비하여 유의하게 높았으며(p<0.01), 전체적으로 대조군의 CPK치가 다른 두 군에 비해서 다소 높게 측정되었다(Table 8 및 Fig. 4).

9. 심근내 수분함량

심혈을 끌어내 한 시간 동안의 수분항용량은 A군이 84.5%, B군이 85.8% 그리고 대조군이 86.8%로 각 군 간에 유의한 차이가 없었다(Table 9).

Fig. 4. Percent recovery of dp/dt.

Fig. 5. Changes of CPK during reperfusion.
Adenosine를 함유한 심장지역의 심근보호 효과

성과 이용능력의 저하, 부적절한 심근의 관류, 유리기 손상(free radical injury) 및 갈음 대사의 이상 등이 있다.8-11 이들 중 ATP의 보존은 특히 중요하다. 혈액-세포관으로 이어지는 기간동안 적절한 대사주기를 이루는 것이 심근의 손상을 방지하며, 세포의 안정에 ATP가 큰 역할을 하기 때문이다. 혈류 발생하는 adenine nucleotide의 감소는 nucleotide 저장소에서 심근 및 채혈에 의한 경로와 salvage 경로의 2가지를 통하도 보충되는데, 전자는 진행이 매우 빠른 반면 후자는 adenosine의 rephosphorylation에 의한 방법임에 때문에 더욱 빠르고 효과적으로 ATP를 재생할 수 있다. 따라서 외환적으로 adenosine를 공급하여 주고 심근세포가 이것은 충분히 이용할 수 있는 조건을 만드는 것보다는 심근보호 및 기능 회복에 매우 유리할 것으로 여겨진다. 이외에도 adenosine의 효과는 많은 것이 알려져 있는데 크게 2가지 시기로 나누어 살펴보면 먼저 혈류상태에서는 담수동료를 직접 적시하여 동헌경을 억제시키며, glycolysis를 증진시키고, ATP에 막강한 알칼리동료를 활성화시켜 세포의 과부장을 조건으로 한다. 혈전제관리 시기에 는 호증과 혈소판을 억제하고, 혈류 후의 고조진 혈관경 좁히는 영향을 약화시키며, 심근 수축력을 억제하여 산소 요구량을 감소시킴으로써 재판류손상을 최소화하는 능력이 있다.8-10 본 실험의 결과, adenosine를 함유한 심장지역에 이 기존의 칼슘 심장지역에 비해 혈류상태의 기능 회복에 더욱 유리하였음을 알 수 있었다. 심장지역 유방시간의 비교를 보면, St. Thomas 심장지역에서 칼륨을 배제하고 고농도의 adenosine(10mmol/L)를 참가한 심장지역을 사용한 군과, 칼륨을 함유하고 있는 St. Thomas 심장지역에 저농도의 adenosine(400mmol/L)를 참가한 심장지역을 사용한 군에서 단 4.2초 및 7.5초의 빠른 심장지역이 유발되어, adenosine를 참가하지 않은 기존의 St. Thomas 심장지역을 사용한 군보다 훨씬 우위하였다. 이는 adenosine의 용량과 비교하여 각기의 후보성이 증가하여 심박동물 경계의 조절에 과분극을 억제함으로써 심장의 활동 전위(action potential)를 억제하여 발생경도 차단을 유발하고11, 칼슘 유입의 저하로 인하여 심근수축 촉진효과가 감소하기 때문이라고 알려져 있다. 그리고 adenosine는 용량에 비해하여 칼슘의 세포막동료를 증진시키기 때문에 고농도 사용시 심장지역은 증가될 수 있으나 장기적 노출 시에는 재판류 후에도 지속적인 발전차단이 발생할 수 있다. 따라서 고농도 심장지역의 관류 후에는 adenosine이 포함되지 않은 액으로 투여된 것이 유리한 것으로 되어있다.12, 완벽하고 빠른 심장지역 유방은 심근내의 에너지 보존과 심 기능 회복에 매우 유리하며, Schubert 등13은 이를 위해서 adenosine 심장지역의 효과를 강조하였으며, 현재 널리 사용되고 있는 경화관성과 감압을 심장지역의 흐름에 대한 단점을 극복하였다. 즉, 첫째, 혈류유도 심정도안 심방의 전기적 활동이 조절적 지속되며, 둘째, 고농도의 칼륨은 흐름 방지 동안 ATP 수지를 감소시키고 셋째, 심장지역의 상태적으로 높이는 것인데 이 결과 지속적인 ATP와의 소모가 발생하지 않으므로 이런 흐름은 최적의 심근보호를 주지 못한 것으로 하였다.14, 15 그리고 칼륨과 adenosine의 종합시, 심장성은 매우 빨랐으나 혈액학적인 흐름은 개선되지 않았다. 이는 고농도의 K+에 의해서 세포막이 탈분극(denpolarization) 되는 반면, adenosine에 의해서는 과분극(hyperpolarization)이 되기 때문에 그대로 흐름이 계속되며 adenosine 단독 투여가 흐름보다 더욱 좋다고 하였다.16, 17 한편, adenosine의 투여가 혈류상태의 심장에서 ATP의 파괴를 방지하며, 재판류시는 ATP 생성을 가속시킨다는 가설은 널리 알려져 있다. Takeo 등18은 저산소 상태의 티스 장상에서 adenosine을 투여한 결과 ATP와 creatine phosphate가 증가되었다고 하였고, Wyatt 등19은 adenosine가 투여된 심장 지역을 사용하여 혈류시작 후에도 ATP의 보존이 잘되었으며, 이는 혈류동안 ATP의 분해가 방지된 결과라고 하였다. Adenosine가 ATP의 이화상태(catabolism)를 감소시키는 기능은 재판류손상의 중요한 인자인 산소 유리기(oxygen free-radical)의 생성을 억제하는 효과도 염두에 두었다. 그 기반이 과산화 유리기(superoxide free-radical)가 ATP의 대사물인 hypoxanthine와 xanthine oxide에서 의해서 xanthine로 진행하는 과정에서 형성되기 때문이다. 19, 20 따라서 adenosine는 ATP의 파괴를 방지함으로써 에너지 원을 보존할 뿐 아니라 재판류 손상의 중요한 원인요소의 생성을 억제하는 효과도 가지는 것이다. 그러나 ATP의 유기가 adenosine에 의해서 혈류동안 ATP의 파괴가 감소된 결과인 재판류 후 ATP의 회복은 조절된 결과인지에 대해서는 논란이 있다. Bolling 등21은 혈중 ATP 감소에 대한 adenosine의 효과는 없었으며 재판류 후에 adenosine 순에 매우 뛰어난 ATP 회복이 관찰되었고하였다. ATP 및 ADP 전단물질의 이화상태는 심장의 혈류 동안 지속적으로 진행되며 이 결과 재판류 후기 점(substrate)의 유산으로 ATP의 재생에 제한을 주기 때문에 이 기전인 adenosine의 공급은 가능한 회복에 큰 효과를 줄 수 있다. 많은 연구자들이 21, 22 adenosine나 hypoxanthine의 공급은 ATP 형성에 매우 유리하다고 보고한 반면, Reibet과 Rovetto는 단순히 adenosine 맞을 공급하여서는 이것이 adenosine deaminase(ADA)에 의해서 inosine으로 쉽게 분해되어 ATP 재생을 촉진시키지 못하기 때문에 aden-
osine의 이하대사를 방지하는 효소를 같이 공급해야 한다고 하였다.

그러나 내인성 adenosine을 증가시킬 목적으로 adenosine deaminase inhibitor인 ethro-9-(2-hydroxy-3-nonyl) adenine hydrochloride(ENHA)효소를 투여하는 연구들이 진행되고 있다. Silverman 등 60)은 60분 간의 헤허 후에 adenosine 단독 사용군 및 ENHA와 혼용군 모두에서 헤허를 일으키기 전의 ATP치와 비슷하게 유지되었고 하였다. 한편, ATP의 외인성 투여도 시도되었으나 이것이 세포막을 통과하지 못하며, 세포막에 있는 ATPase에 의하여 파괴되기 때문에 효과적인 방법이 못되었다고 하였다.

본 실험에서 심장기능의 회복성도를 adenosine군이 칼륨 심장지역을 사용한 대조군보다 훨씬으로 우수하였으며, St. Thomas 심장지역에서 칼륨을 배제하고 고농도의 adenosine(10mmol/L)를 첨가한 심장지역을 사용한 군과 칼륨을 함유하고 있는 St. Thomas 심장지역에 저농도의 adenosine(400mmol/L) 첨가군 사이에는 별 차이가 없었다. 관상동맥 관류량의 회복율은 adenosine군에서 더욱 우수하였는데, 이는 adenosine이 강력한 관상동맥 확장 기능을 가지며, 혈류의 자동조절 기능을 가진 세포세포에서의 역할을 하게 때문일 것이라고 여겼다. Adenosine은 심장에 산소의 공급이 부족할 때 심장 세포로부터 유리되어 관상동맥의 저항을 감소시키고 혈류를 증가시키면서 심근을 보호하는 역할을 가지기 때문에 이의 공급은 헤허 상태에서 매우 효과가 있다고 할 수 있다. 재관류 손상의 한 요소로서 나타나는 no-reflow 현상80)은 화학적 화학물질에 의한 혈관 폐쇄와 혈관내피세포의 손상과, 저산소상태의 내피세포에서 분비되는 혈관수축체의 영향 등에 의해 유발되고 관상동맥의 혈류량이 감소되는데, 이때 adenosine은 강력한 혈관 확장의 기능 외에도 호흡중구의 기능을 억제하여 혈관내피세포의 손상을 감소시키므로써 관상동맥의 관류를 유지해주 는 역할을 하게 된다80). 그러나 내인적으 로 형성되는 adenosine의 양으로는 혈관과 관류로 인한 독성 효과를 충분히 방지할 수 없기 때문에 고농도의 adenosine을 투여할 필요성이 있는 것이다80). 이외에도 adenosine는 재관류시 일어나는 혈관관두의 응집을 방해함으로써 microthrombosis를 예방하는 기능도 가진다80). 그리고 Saldanha 등80)은 칼륨의 농도가 높을수록 혈관내피세포의 기능이 상해되면 심장기능이 저하되었다고 하였으며, 실제로 고농도의 산류 칼륨에 의한 혈관근육수의 수축이 기대하기 때문에 고농도의 칼륨 심장기에의 사용이 필요하다고 하였다. 칼륨과 관류량과 심장활동에서 있어서도 adenosine군의 회복이 우수하였으며, 특히 수축기 동맥압과 dp/dt의 회복은 adenosine 군에서 유의하게 높았는데, 이는 혈관의 심근보호의 결과를 가장 실질적으로 반영한다고 하였다. 재관류손상이 심한 실험에서는 심근세포내의 칼슘(Ca++) 유입 및 심근세대의 장애의 결과로 심근세포의 이완성이 멸어지고, 시간에 따른 압력의 변화 능력도 감소하게 되어 결국 저심박출증을 초래하게 된다. Bolting 등80)은 재관류시 adenosine 군에서는 이완기 경직(diastolic stiffness)이 더욱 감소하였으며, 심장의 확장가능한 압력대비에 비해서 낮게 유지되었다고 하였는데, 이는 본 실험에서의 양 호한 dp/dt의 회복과 유관한 것으로 생각되었다.

재관류 동안의 CPK치 변화는 고농도 adenosine군에서 의미있게 감소하여 심근보호 효과를 간접적으로 보완하였다. 그러나 헤허 및 재관류손상으로 인한 세포의 부종 정도를 비교하기 위해서 측정한 심근의 수분함유가 각 군 간에 유의한 차이가 없었는데, 심근세포의 부중은 혈류의 적절한 분산을 방해하고 심근의 수축력을 감소시키기 때문에 이것의 백지에 핵심적인 주요한 요인이다. 이를 위해서는 먼저 최상의 심근의 보호를 함으로써 혈관의 안정성을 도모하는 것인데, 앞서 언급한 바와 같이 adenosine의 사용이 많은 도움을 줄 수 있을 것으로 생각된다. 이외에 심장지역의 관류압을 너무 높이기 않으며, 이온 조성을 적절히 하여 세포내의 나트륨 축적을 방지하고, 적절히 삼투압 및 교심삼투압을 유지해야 한다80). Adenosine의 적절 용량에 대해서는 논란이 많으며, Bolting 등80)은 adine nucleotide의 보존효과는 100~400mmol/L, 그리고 심기능의 회복은 200mmol/L까지의 용량에서 양에 비례하여 증가하였고 하였다. 다른 보고들 80)에 의하면 1~10mmol/L의 용량에서 심근보호효과를 증가시켰다고 하였다. 그리고 Schubert 등80)은 adenosine 10mmol/L 단독 사용군이 산류 단독이나 두가지의 혼용 사용군에 비하여 심장기능이 빠르고 심기능회복도 우수하였다고 하였다.

결론적으로 adenosine의 헤허심장에 대한 작용은 매우 다양하다. 특히 빠른 심정지류 방출되어 심근의 교반지를 유지시키므로써 재관류손상을 방지하여 결국 심기능의 회복에 많은 도움을 준다. 그리고 심장에 적용할 경우에는 심장수술 환자, 특히 재관류손상의 가능성이 많은 환자들에 대한 좋은 방법이 될것으로 생각된다.

결 론

허혈성 심장이 후 심장으로의 관류가 재개될 때 발생하는 재관류손상은 심근보호의 측면에서 가장 중요한 요소이다. 따라서 헤허-재관류로 이어지는 기간동안 적절한
대사균형을 유지하여 ATP를 보존하는 것이 심근보호의 주 목표가 되었다. 이에 저자는 강력한 혈관확장제이면서 간헐적으로 혈관확장을 활성화시키는 작용을 가진 adenosine를 첨가하여, 이의 심근보호 효과를 기존의 고농도 간헐적과 비교한 결과 adenosine를 함유한 심장주의기름은 심장장벽의 심장절지면에 비하여 보다 빠른 심장기능을 유도하였고, 심장의 회복에 더욱 유리한 결과를 보여주었다. 그리고 St. Thomas 심장여러에서는 감독을 배제하고 고농도의 adenosine(10mmol/L)을 첨가한 심장절지면을 사용한 군(A군)과 감독을 함유하고 있는 St. Thomas 심장여러에서 저농도의 adenosine(400mmol/L)을 첨가한 심장절지면을 사용한 군(B군) 간에는 의미있는 차이를 발견할 수 없었다. 따라서, 재판문 손상의 위험성이 높은 실험자들의 수술에 있어서 adenosine가 첨가된 심장절지면의 사용은 좋은 장점을 기대할 수 있을 것으로 사료된다.

참고문헌

Adenosine을 함유한 심장지역의 심근보호 효과

Adenosine을 함유한 심장지역의 심근 보호 효과와 심장 수술에 있어서 허혈성 심장지는 자의 폐인적인 과정이며 이로 인한 재판류후의 심근 손상은 심장 수술의 성패를 결정하는 가장 중요한 요소중의 하나이다. Adenosine은 강력한 혈관 확장제이며 갈슘동로에 흡수하고 칼슘동로를 활성화 시켜금새로 빠른 심장지를 유도하여 허혈성 심장지후 회복을 향상시킨다. Adenosine 이 칼슘보다 빠른 심장지를 유도하고 허혈성 심장지후 혈액학적 회복을 향상시키는데 효과적인다는 가설을 검정하기위해 환자의 심장을 Langendorff 장치에 연결하고 Krebs-Henseleit 환경액으로 관류시킨후 심근 마비액을 이용하여 60분간 심정지를 시켰으며 심근 마비액은 구성에 따라 3군으로 분류하였다. A군(n=10), 칼륨을 함유하지 않은 St. Thomas 심장지역에 adenosine 10mmole/L을 첨가, B군(n=10), 칼륨을 함유한 St. Thomas 심장지역에 adenosine 400 mol/L을 첨가, C군(n=10), 기존의 St. Thomas 심장지역, Adenosine 을 함유한군(A군과 B군)은 대조군(C군)에 비해 빠른 심정지를 유발하였다(p<0.01). 관상동맥 관류량은 대조군과 비교하여 A군에서는 재판류 20분과 30분에 B군에서는 재판류 20분에 증가가 있었다(p<0.01). 수축기 동맥암은 A군과 B군에서 재판류 10분에 향상이 있었다(p<0.01). dp/dt는 A군에서 재판류 10분에 증가가 있 었다(p<0.05). A군과 B군은 대동맥 관류량, 심박출량, 심박수에서도 C군에 비해 좋은 회복율을 보였으 나 동계학적 유의성은 없었다. CPK 치는 A군에서 낮게 측정 되었다(p<0.01). 이상의 결과로 보아 adenosine을 함유한 심장지역이 기존의 칼럼 심장지역에 비하여 빠른 심정지를 유도하였고 심장의 회 복에 더욱 유리한 결과를 보여 주었다.