Interface formation and thermodynamics between SiC and thin metal films

SiC와 금속박막간의 계면형성 및 열역학

  • Chang-Sung Lim (Dept. of Material Chemical Engineering, Chonnam National University, Kwangju 500-757, Korea) ;
  • Kwang-Bo Shim (Ceramic Materials Research Institute, Hanyang University, Seoul 133-791, Korea) ;
  • Dong-Woo Shin (Dept. of Inorganic Materials Engineering, Gyeongsang National University, Chinju 660-7f01, Korea) ;
  • Keun-Ho Auh (Ceramic Materials Research Institute, Hanyang University, Seoul 133-791, Korea)
  • Published : 1996.03.01

Abstract

The interface formation and reaction-product morphology between SiC and thin metal films were studied at temperatures between 550 and $1450^{\circ}C$ for various times. The typical reaction layer sequence was CoSi/CoSi+C/CoSi/CoSi+C/ $\cdots$ /SiC reaction at 1050 and $1250^{\circ}C$ for 2 h, while $Ni_2Si/Ni_2Si+C/Ni_2Si/Ni_2Si+C/ {\cdots} /SiC$ at 950 and 105$0^{\circ}C$ for 2 h. Carbon precipitated preferentially on the outer surface and crystallized as graphite above $1450^{\circ}C$ for SiC/Co reaction zone and $1250^{\circ}C$ for SiC/Ni. The mechanism of the periodic band structure formation with carbon precipitation behaviour was discussed in terms of thermodynamic considerations.

SiC와 금속박막간의 계변형성 및 반응 생성물의 구조가 $5500^{\circ}C$에서 $1450^{\circ}C$의 온도 범위에서 조사되어졌다. SiC와 코발트간의 반응에 있어서 전형척인 반응충의 순서는 $1050^{\circ}C$에서 $1250^{\circ}C$까지의 온도 범위에서 CoSi/CoSi+C/CoSi/CoSi+C/ $\cdots$ /SiC이었고, SiC와 니켈간의 반응에 있어셔 전형적인 반응충의 순셔는 $950^{\circ}C$에서 $1050^{\circ}C$까지의 온도 범위에서 $Ni_2Si/Ni_2Si+C/Ni_2Si/Ni_2Si+C/ {\cdots} /SiC$이었다. 탄소의 결정화가 SiC / Co 반응에 있어서논 $1450^{\circ}C$ 이상에서 그리고 SiC/Ni 반응에 였어서는 $1250^{\circ}C$ 이상에서 바깐면으로 우선적으로 석출되였다. 또한, 탄 소석출거동을 동반한 주기적인 띠구조의 형성 기구가 열역학적인 고찰을 통하여 논하여졌다.

Keywords

References

  1. Mat. Sci. Res. v.21 M.G. Nicholas
  2. J. Mater. Res. v.5 D.J. Larkin;L.V. Interrante;A. Bose
  3. Ceramic Bulletin v.68 R.E. Loehman
  4. J. Am. Ceram. Soc. v.71 R.C.J. Schiepers;F.J.J. van Loo;G.D. With
  5. Ber. Bunsenges. Phys. Chem. v.93 M. Backhaus-Ricoult
  6. J. Mater. Res. v.6 T.C. Chou;A. Joshi;J. Wadsworth
  7. J. Mat. Sci. v.27 P. Nikolopoulos;S. Agathopoulos;G.N. Angelopoulos;A. Naoumidis;H. Grubmeier
  8. cfi/Ber. DKG v.66 E. Gyarmati;W. Kesternich;R. Forthmann
  9. J. Mater. Res. v.5 D.L. Yaney;A. Joshi
  10. J. Mater. Res. v.5 T.C. Chou;T.G. Nieh
  11. J. Mater. Res. v.5 V.M. Bermudes;R. Kaplan
  12. Nuclear Instruments and Methods in Physics Research v.B7 D. Fathy;O.W. Holland;J. Narayan;B.R. Appleton
  13. J. Vac. Sci. Technol. v.B6 H. Hochst;W. Niles;G.W. Zajac;T.H. Fleisch;B.C. Johnson;J.M. Meese
  14. J. Appl. Phys. v.66 W.F.J. Slijkerman;A.E.M.J. Fischer;J. F. van der Veen;I. Ohdomari;S. Yoshida;S. Misawa
  15. J. Appl. Phys. v.62 I. Ohdomari;S. Sha;H. Aochi;T. Chikyow;S. Suzuki
  16. J. Appl. Phys. v.57 C.S. Pai;C.M. Hanson;S.S. Lau
  17. J. Appl. Phys. v.56 J. Narayan;D. Fathy;O.W. Holland;B.R. Appleton;R.F. Davis
  18. J. Kor. Assoc. of Crystal Growth v.5 C.S. Lim
  19. Metallurgical Thermochemistry O. Kubaschewski;C.B. Alcock
  20. J. Appl. Phys. v.49 S.S. Lau;J.W. Mayer
  21. J. Appl. Phys. v.49 G.J. van Gurp;W.F. van der Weg;D. Sigurd
  22. Thin Solid Films v.128 F.M. d'Heurle;C.S. Petersson
  23. Thin Solid Films v.93 A.P. Botha;R. Pretorius
  24. Appl. Phys. Lett. v.28 R.M. Walser;R.W. Bene
  25. Thin Solid Films v.143 C.D. Lien;M.A. Nicolet;S.S. Lau
  26. Thin Solid Films v.25 K.N. Tu;W.K. Chu;J.W. Mayer
  27. J. Appl. Phys. v.55 F.d'Heurle;C.S. Peterson;J.E.E. Baglin;S.J. La Placa;C.Y. Wong