SiC와 금속박막간의 계면형성 및 열역학

Interface formation and thermodynamics between SiC and thin metal films

  • Chang-Sung Lim (Dept. of Material Chemical Engineering, Chonnam National University, Kwangju 500-757, Korea) ;
  • Kwang-Bo Shim (Ceramic Materials Research Institute, Hanyang University, Seoul 133-791, Korea) ;
  • Dong-Woo Shin (Dept. of Inorganic Materials Engineering, Gyeongsang National University, Chinju 660-7f01, Korea) ;
  • Keun-Ho Auh (Ceramic Materials Research Institute, Hanyang University, Seoul 133-791, Korea)
  • 발행 : 1996.03.01

초록

SiC와 금속박막간의 계변형성 및 반응 생성물의 구조가 $5500^{\circ}C$에서 $1450^{\circ}C$의 온도 범위에서 조사되어졌다. SiC와 코발트간의 반응에 있어서 전형척인 반응충의 순서는 $1050^{\circ}C$에서 $1250^{\circ}C$까지의 온도 범위에서 CoSi/CoSi+C/CoSi/CoSi+C/ $\cdots$ /SiC이었고, SiC와 니켈간의 반응에 있어셔 전형적인 반응충의 순셔는 $950^{\circ}C$에서 $1050^{\circ}C$까지의 온도 범위에서 $Ni_2Si/Ni_2Si+C/Ni_2Si/Ni_2Si+C/ {\cdots} /SiC$이었다. 탄소의 결정화가 SiC / Co 반응에 있어서논 $1450^{\circ}C$ 이상에서 그리고 SiC/Ni 반응에 였어서는 $1250^{\circ}C$ 이상에서 바깐면으로 우선적으로 석출되였다. 또한, 탄 소석출거동을 동반한 주기적인 띠구조의 형성 기구가 열역학적인 고찰을 통하여 논하여졌다.

The interface formation and reaction-product morphology between SiC and thin metal films were studied at temperatures between 550 and $1450^{\circ}C$ for various times. The typical reaction layer sequence was CoSi/CoSi+C/CoSi/CoSi+C/ $\cdots$ /SiC reaction at 1050 and $1250^{\circ}C$ for 2 h, while $Ni_2Si/Ni_2Si+C/Ni_2Si/Ni_2Si+C/ {\cdots} /SiC$ at 950 and 105$0^{\circ}C$ for 2 h. Carbon precipitated preferentially on the outer surface and crystallized as graphite above $1450^{\circ}C$ for SiC/Co reaction zone and $1250^{\circ}C$ for SiC/Ni. The mechanism of the periodic band structure formation with carbon precipitation behaviour was discussed in terms of thermodynamic considerations.

키워드

참고문헌

  1. Mat. Sci. Res. v.21 M.G. Nicholas
  2. J. Mater. Res. v.5 D.J. Larkin;L.V. Interrante;A. Bose
  3. Ceramic Bulletin v.68 R.E. Loehman
  4. J. Am. Ceram. Soc. v.71 R.C.J. Schiepers;F.J.J. van Loo;G.D. With
  5. Ber. Bunsenges. Phys. Chem. v.93 M. Backhaus-Ricoult
  6. J. Mater. Res. v.6 T.C. Chou;A. Joshi;J. Wadsworth
  7. J. Mat. Sci. v.27 P. Nikolopoulos;S. Agathopoulos;G.N. Angelopoulos;A. Naoumidis;H. Grubmeier
  8. cfi/Ber. DKG v.66 E. Gyarmati;W. Kesternich;R. Forthmann
  9. J. Mater. Res. v.5 D.L. Yaney;A. Joshi
  10. J. Mater. Res. v.5 T.C. Chou;T.G. Nieh
  11. J. Mater. Res. v.5 V.M. Bermudes;R. Kaplan
  12. Nuclear Instruments and Methods in Physics Research v.B7 D. Fathy;O.W. Holland;J. Narayan;B.R. Appleton
  13. J. Vac. Sci. Technol. v.B6 H. Hochst;W. Niles;G.W. Zajac;T.H. Fleisch;B.C. Johnson;J.M. Meese
  14. J. Appl. Phys. v.66 W.F.J. Slijkerman;A.E.M.J. Fischer;J. F. van der Veen;I. Ohdomari;S. Yoshida;S. Misawa
  15. J. Appl. Phys. v.62 I. Ohdomari;S. Sha;H. Aochi;T. Chikyow;S. Suzuki
  16. J. Appl. Phys. v.57 C.S. Pai;C.M. Hanson;S.S. Lau
  17. J. Appl. Phys. v.56 J. Narayan;D. Fathy;O.W. Holland;B.R. Appleton;R.F. Davis
  18. J. Kor. Assoc. of Crystal Growth v.5 C.S. Lim
  19. Metallurgical Thermochemistry O. Kubaschewski;C.B. Alcock
  20. J. Appl. Phys. v.49 S.S. Lau;J.W. Mayer
  21. J. Appl. Phys. v.49 G.J. van Gurp;W.F. van der Weg;D. Sigurd
  22. Thin Solid Films v.128 F.M. d'Heurle;C.S. Petersson
  23. Thin Solid Films v.93 A.P. Botha;R. Pretorius
  24. Appl. Phys. Lett. v.28 R.M. Walser;R.W. Bene
  25. Thin Solid Films v.143 C.D. Lien;M.A. Nicolet;S.S. Lau
  26. Thin Solid Films v.25 K.N. Tu;W.K. Chu;J.W. Mayer
  27. J. Appl. Phys. v.55 F.d'Heurle;C.S. Peterson;J.E.E. Baglin;S.J. La Placa;C.Y. Wong