Phase and microstructure of hot-pressed SiC-AlN solid solutions

열간가압소결에 의한 SiC-AIN 고용체의 상 및 미세구조

  • Chang-Sung Lim (Department of Material Chemical Engineering, Chonnam National University, Kwangju 500-757, Korea) ;
  • Chang-Sam Kim (Division of Ceramics, Korea Institute of Science and Technology, Seoul 136-791, Korea) ;
  • Deock-Soo Cheong (Division of Ceramics, Korea Institute of Science and Technology, Seoul 136-791, Korea)
  • Published : 1996.05.01

Abstract

High-density SiC-AIN solid solutions were fabricated from powder mixtures of $\beta$-SiC and AIN by hot-pressing in the 1870 to $2030^{\circ}C$ temperature range. The reaction of AIN and $\beta$-SiC (3C) powder transformed to the 2 H (wurzite) structure appeared to depend on the temperature and SiC/A1N ratio and seeds present. The crystalline phases consisted of a SiC-rich solid-solution phase and an A1N-rich solid-solution phase. At $2030^{\circ}C$ for 1 h, for a composition of 50 % AIN/50 % SiC with a seeding of $\alpha$-SiC, the complete solid solution could be obtained and the microstructures are equiaxed with a relatively homogeneous grain size of 2 H phases. The variation of the seeding of $\alpha$-SiC in SIC-A1N solid solutions could be attributed to the transformation behaviour and differences in size and shape of the grains, as well as to other factors, such as grain size distributions, compositional inhomogeneity, and structural defects.

$\beta$-SiC와 AIN의 혼합분말로부터 열간가압소결에 의하여 고밀도의 SiC-AIN 고용체가 $1870^{\circ}C$에서 $2030^{\circ}C$ 사이의 온도범위에서 제조되어졌다. 온도와 SiC/AIN의 비 및 seed의 존재에 따라 AIN과 $\beta$-SiC(3C) 분말의 반응은 2 H (wurzite) 구조로의 전이를 나타내었다. 결정상들은 SiC-rich 및 AIN-rich 고용체로 구성되었다. $2030^{\circ}C$, 1시간에서 5 wt%의 $\alpha$-SiC seed를 첨가한 50 % AIN/50% SiC의 조성에 대하여 완전한 고용체가 얻어졌으며, 미세구조가 비교적 균일한 2 H상의 결정립 크기를 가지고균일한 성장경향을 나타내었다. SiC-AIN 고용체에 있어서 $\alpha$-SiC seed의 변수가 전이기구 및 결정립의 크기와 모양을 비롯한 결정립 크기의 분포, 조성의 불균일성과 구조적 결함 등에 영향을 미칠 수 있었다.

Keywords

References

  1. The Encyclopedia of Advanced Materials v.4 D. Bloor;R. J. Brook;M. C. Flemings;S. Mahajan;R. W. Cahn
  2. Nature v.275 I. B. Cutler;P. D. Miller;W. Rafaniello;H. K. Park;D. P. Thomson;K. H. Jack
  3. J. Mat. Sci. v.16 W. Rafaniello;K. Cho;A. V. Virkar
  4. J. Mat. Sci. Lett. v.7 Y. Sugahara;K. I. Sugimoto;H. Takagi;K. Kuroda;C. Kato
  5. J. Mat. Sci. Lett. v.1 K. Tsukuma;M. Shimade;M. Koizumi
  6. J. Am. Ceram. Soc. v.69 Y. Sugahara;K. Kuroda;C. Kato
  7. J. Am. Ceram. Soc. v.65 R. Ruh;A. Zangvil
  8. J. Am. Ceram. Soc. v.66 L. D. Bentsen;D. P. H. Hasselman;R. Ruh
  9. J. Am. Ceram. Soc. v.66 W. Rafaniello;M. R. Plichta;A. V. Virkar
  10. Mat. Sci. Eng. v.71 A. Zangvil;R. Ruh
  11. Am. Ceram. Soc. Bull. v.64 R. Ruh;A. Zangvil;J. Barlowe
  12. J. Am. Ceram. Soc. v.69 Z. C. Jou;S. Y. Kuo;A. V. Virkar
  13. J. Am. Ceram. Soc. v.70 S. Y. Kuo;A. V. Virkar;W. Rafaniello
  14. J. Am. Ceram. Soc. v.71 A. Zangvil;R. Ruh
  15. J. Am. Ceram. Soc. v.73 S. Y. Kuo;A. V. Virkar
  16. J. Mat. Sci. v.25 I. Teusel;C. Russel
  17. J. Mat. Sci. v.26 J. F. Li;R. Watanabe
  18. J. Am. Ceram. Soc. v.75 Y. Xu;A. Zangvil;M. Landon;F. Thevenot
  19. J. Am. Ceram. Soc. v.75 R. Sathyamoorthy;A. V. Virkar;R. A. Cutler
  20. J. Am. Ceram. Soc. v.75 J. Chen;Q. TianA. V. Virkar
  21. Ceram. Eng. Sci. Proc. v.11 R. R. Lee;W. C. Wei
  22. J. Mat. Sci. Lett. v.11 I. Teusel;C. Russel
  23. J. Mat. Sci. v.28 M. Miura;T. Yogo;S. I. Hirano