Growth of CdS thin film using hot wall epitaxy method and their photoconductive characteristics

HWE 방법에 의한 CdS 박막의 성장과 광전도 특성

  • Published : 1996.08.01

Abstract

The CdS thin films are grown on quartz plate by hot wall epitaxy. The source and substrate temperature is $590^{\circ}C$ and $400^{\circ}C$ respectively, and thickness of the film is $2.5\;\mu\textrm{m}$. Using extrapolation method of X-ray diffraction patterns for the CdS thin film, it was found hexagonal structure whose lattice constant a and c were $4.137\;{\AA}$ and $6.713\;{\AA}$, respectively. Hall effect on this sample was measured by the method of van der Pauw and studied on cattirer density and mobility depending on temperature. From hall data, the mobility was likely to be decreased by piezoelectric scattering in the temperature range 30 K to 200 K and by polar optical scattering in the temperature range 200 K to 293 K. In order to explore the applicability as a photoconductive cell we measured the sensitivity ($\gamma$), the ratio of photocurrent to darkcurrent (pc/dc), maximum allowable power dissipation (MAPD), spectral response and response time. The results indicated that for the samples annealed in Cu vapor the photoconductive characteristics are the best. Then we obtained the sensitivity of 0.99, the value of pc/dc of $9.42{\times}10^{6}$, the MAPD of 318 mW, and the rise and decay time of 10 ms and 9 ms, respectively.

HWE 방법으로 CdS 박막을 quartz plate 위에 성장하였다. CdS 박막을 성장할 때 증발원과 기판의 온도를 각각 $590^{\circ}C$, $400^{\circ}C$로 하였고 성장된 두께는 $2.5\;\mu\textrm{m}$였다. 성장된 CdS 박막의 X-선 회절 무늬로부터 외삽법에 의해 구한 a와 c는 각각 $4.137\;{\AA}$$6.713\;{\AA}$인 육방정계임을 알았다. Van der Pauw 방법으로 Hall 효과를 측정하여 운반자 농도와 이동도의 온도 의존성을 연구하였다. 이동도는 30 K에서 200 K까지는 piezoelectric 산란에 기인하고, 200 K에서 293 K까지는 polar optical 산란에 의하여 감소하였다. 광전도 셀의 특성으로 spectral response, 최대 허용 소비전력 (MAPD), 광전류와 암전류비 (pc/dc), 및 응답시간을 측정하였다. Cu 증기 분위기에서 열처리한 광전도 셀의 경우 ${\gamma}=0.99,\;pc/dc=9.42{\times}10^{6}$, MAPD : 318 mW, rise time 10 ms, decay time 9 ms로 가장 좋은 광전도 특성을 얻었다.

Keywords

References

  1. Active and Passive Thin Film Device V. Vincent
  2. Physical Dectors of Optical Radiation W. Budde
  3. Phys. Rev. v.99 R.H. Bude
  4. Thin Film Device Applications K.L. Chopra;I. Kaur
  5. J. Vac. Sc. Technol. v.15 A. Smith
  6. 새물리 v.30 no.4 홍광준;신영진;양동익;정태수;신현길;유기수
  7. Thin Solids Films v.10 K.K. Muravyeva;I.P.K. Kinm;V.B. Aleakvsky;I.N. Anikin
  8. J. Appl. Phys. v.53 J.W. Orton;B.J. Gold Smith;J.A. Chapman;M.J. Powell.
  9. Thin Solid Films v.95 M. Muller;H. Tian;U. Becker;M. Grun;C. Klingshirn
  10. Elements of X-ray Diffractions B.D. Cullity
  11. J. Phys. Soc. v.20 H. Fujita
  12. Phys. Rev. v.B44 Y.J. Shin;S.K. Kim
  13. Ⅱ-Ⅵ Compounds B. Ray
  14. Hamamatsu Photonics Hamamatsu