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Intelligent Predictive Control of Time — Varying Dynamic
Systems with Unknown Structures Using Neural Networks
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Abstract

A neural predictive tracking system for the control of structure-unknown dynamic systems is

presented. The control system comprises a neural network modelling mechanism for the for-

ward and inverse dynamics of a plant to be controlled, a feedforward controller, a feedback con-

troller, and an error prediction mechanism. The feedforward controller, a neural network model

of the inverse dynamics, generates feedforward control signal to the plant. The feedback control

signal is produced by the error prediction mechanism. The error predictor adopts the neural

network models of the forward and inverse dynamics. Simulation results are presented to

demonstrate the applicability of the proposed scheme to predictive tracking control problems.

[ . INTRODUCTION

In conventional control theory, most of the
work on the identification and control of
dynamic systems has been based on the
assumption ; 1) the plant to be controlled is
linear 2) the plant model has a known form,
but unknown parameters. The parameter esti-
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mation process in the approaches causes a
growing computational complexity with the
number of unknown parameters”. Because of
this problem, it is difficult to obtain a practical
control system to achieve high performance in
the control of unknown dynamic systems.
Recently, there has been much interest in

applying neural networks to the identification
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and control of dynamic systems. This is bec-
ause neural networks can easily be applied to
model the plant forward dynamics and inverse
dynamics without a priori knowledge of the
plant and these neural network models can be
immediately used for control problems**.

A number of approaches have been proposed
and used in many applications over the years *+
. The work of Narendra et al.* has shown that
it is feasible to model the forward dynamics of
general linear and nonlinear plants (including
multivariable systems) by using the so called
tapped delay neural networks (TDNN).
Although some theoretical questions, such as
optimum network size and local minima still
remain, neural networks have great promise in
modelling nonlinear systems®.

On the other hand, neural networks have
been employed to identify or extract inverse
dynamics models of unknown plants through
learning®”. There are two main approaches, i.e.
direct and indirect inverse learnings, to the
neural — network — based identification of the
inverse dynamics of plants®. If a perfect inverse
dynamics model is available, the controller
could simply be made equal to the inverse
dynamics of the plant to be controlled. This
idea has been adopted to the control problem
for a robot manipulator to determine suitable
control inputs for each joint, so that the manip-
ulator can execute a certain commanded
motion®?. In the approach of 9), the controller
utilised the CMAC network as the robot
dynamics model.

This paper presents a predictive tracking
control scheme by using neural network? for
dynamic systems with unknown structures.
The scheme is based on a feedforward and feed-
back controllers for controlling unknown plants
without a priori knowledge of their dynamics.
The proposed scheme is described in Section [

and the simulation results obtained are given
in Section [} .

I. CONTROL ARCHITECTURE

1. Modelling Forward and Inverse

Dynamics

The forward and inverse dynamics models
are realised by neural networks which are
trained off - line. In the training procedure, the
neural network ¥ for the forward dynamics
model of the plant to be controlled is positioned
across the plant, taking as input the plant
input (control signal). The neural network @
for the inverse dynamics model of the plant is
trained with direct inverse learning scheme,
i.e. the network is placed across the plant and
takes as input the actual plant output. It is
assumed that ¥ and @ are sufficiently complex
to be able to approximate any input - output
and output - input mappings of dynamic sys-
tems, respectively. The sequential type recur-
rent backpropagation networks described in
2,6) are used to implement ¥ and &.

The pattern training method?® has been
employed whereby the weight adjustment pro-
cess is carried out after presentation of each
input - output data pair (training pattern) to
the network. The training stops when the mean
squared error has fallen below a preset thresh-
old. In training the inverse network, the net-
work learns to produce the approximation of
z ‘u (with plant input u) by adjusting its train-
able weights based on the gradient of the error
between z "u and the network output with
respect to these weights, so as to drive the
error to zero. The delay term d is generally cho-
sen to be between 1 and 3 for systems without
time delays®. Figurel shows the neural net-
work architecture used for the forward and
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Fig. 1 Architecture of neural network used

inverse dynamics modellings in this work?.

2. Feedback Error Prediction Mech-
anism

A feedback error prediction mechanism(pre-
dictor) is used to achieve an advanced control
performance by incorporating in the control

law. The error predictor utilises two neural net-
works representing the forward and inverse
dynamics of the plant as depicted in Figure 2.
The forward dynamics modelling network ¥ and
the inverse dynamics modelling network & are
obtained from off - line training, respectively.

The current predicted feedback error Ek+1)
is computed from a forward and inverse models
of the plant, as follows :

Y(k+1D=¥ Dy k+1), y4 ud +K - E(k)}

(1
AEk+ 1) =y (k+1) -y(k+1) (2)
E(k+ )= (E(k)+AEK+ 1)) (3)

where K is the proportional feedback gain cho-
sen to satisfy control specifications, y(k+1) is
the predicted output of the plant, ysk+1) is
the next desired output, y = [y4(k)---yqk - n,+
1]T, ue=[udk - )---ugdk - n, + 1)]7, and n,, n,
represent the maximum dynamic lags in the
reference input and the feedforward control
input, respectively, k is the time instant.

yd(k+1 d) ur(k), ue(k)

=

Y1) b 8 E(k+1) Sppy)

v o2

] |

e(k)

L

(k) u (k-1)
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O

Fig. 2 Block diagram of error prediction mechanism
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3. Control Architecture

The control scheme adopted in this work is
composed of a feedforward inverse controller
and a feedback controller. The feedforward
inverse controller is a neural network the
dynamics of which is the inverse dynamics of
the plant to be controlled. This control net-
work, ®°, is a direct copy of the network, @,
modelling the inverse dynamics of the con-
trolled plant through training (training net-
work). The control network ®- is placed in
series with the controlled plant. The feedfor-
ward control signal is generated by &, taking
as inputs the desired output (reference). The
feedback control signal is produced by a propor-
tional feedback controller through the feedback
error predictor to compensate for discrepancies
between the desired and actual plant outputs.

Consider a single —input - single ~ output
dynamic plant which can be represented in the
discrete input — output format as

y(k+ 1)=h{y(k), --y(k - n,+1), u(k), utk - 1),
<, ulk - ny+ 1)} (4)

where y and u are the plant output and input,
and h is a function mapping the present and
past inputs to the plant and the present and
past outputs from the plant to the next output
~of the plant.
By assuming that there exists a function
g( - ) such that equation (4) is invertible, an
inverse description for the plant can be given

as follows:

u(k)=gly(k+1), y(k),---, y(k—n,+ 1), u(k - 1),
ooy ik ~ 0y + 1} (5)

Equation (5) can be implemented by a con-
troller, ®( - ), with input vector x(k), where

x(k)=[ygk+ 1 yul” (6)

where y=[y(k) -+ y(k - n,+ 1)I" is the vector of
present and past outputs (output dynamic
memory), and u={uk-1) - wlk—n,+ DI is
the vector of the input dynamic memory.

The controller output u(k) and the plant out-
put y(k+ 1) are, respectively,

u(k)=d{x(k)}

:ud*(k)
y(k+1)=hly, u, &{x(k)}} (D
—yyk+1) (8)

In equation (7), uy*(k) represents the con-
troller output needed to produce the output of
the plant. Thus, if the output of ®( - ) approxi-
mates sufficiently accurately that of g( - ) for a
corresponding input, the plant output y(k+1)
will equate the desired output, y4(k+ 1).

According to equations (7) - (8), the actual
plant output y can be arbitrarily controlled to
any desired output y4 if a complete inverse
mapping is available. However, in practice,
when one considers @ to be the inverse model
of the plant, the identity between equations (5)
and (7) is generally very difficult to realise due
to noise, modelling uncertainty, and changes in
the environment.

To control the plant with a practical inverse
controller, a control law is defined as follows :

u (k)= ugk)+uy(k)
=@y, k+1), yg, w+K - Bk+1) (9

Yalk+ 1) u (k) cuc(k) yik+1)

% Plant
ub(kl[

K
é(k+1)J

Error
Prediction
Mechanism

.
2 g

f?'-
Fig. 3 Schematic configuration of control system
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where u, represents the actual control input,
u; and uy, are the feedforward and feedback con-
trol signals. The schematic configuration of the

overall control system is shown in Figure 3.

. SIMULATION RESULTS

In this Section, experimental results for an
example plant are given to illustrate the mod-
elling validation and the performance of the
proposed control scheme.

An unknown plant'’ represented by the fol-
lowing input - output equation was to be con-
trolled :

y(k+1)=0.68y(k)+0.22 y(k - 1)+0.26u(k)
+0.08uk- 1) (10)

Table 1 Training Parameters For Neural Networks

For training the forward dynamics modelling
network, a uniformly distributed random input
signal was used. In the inverse dynamics mod-
elling case, a sinusoidal signal u(k)=0.05sin(2
7k * 0.1)+0.2sin(27k * 0.03)+0.3sin(27k * 0.01)
was chosen. 400 training data were used for
both the forward and inverse dynamics cases,
and d=1 was selected for modelling inverse
dynamics. The parameters for the networks are
given in Table 1. In the simulation for control,
K=1.0 and step reference input were used.
Figure 4 shows the training results of the
inverse dynamics modelling network with the
sinusoidal input signal after 100,000 training
iterations. In this case, the mean squared error

(MSE defined as follows) for the training phase

Parameter n n B I n N ‘ Hid. Layer Activation Training Signal
Forward 0.0015 0.05 0.80 7 100,000 Linear Uniformly Random
Inverse 0.0015 0.05 0.80 i 100,000 Linear Sinusoid
1 : learning rate, p: momentum term, B : self feedback gain
n : mumber of hidden/state units, N : number of training iterations.
— Input ® Netout Plant out
i I L 1 _

Fig. 4 Training results
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became nearly zero. The recall results of the squared error (NMSE) defined as follows was
inverse modelling network are given in Figure obtained.
5 with different sinusoidal input signal u(k)= MSE = 7\/1" g‘,{u(k)— AR ap
0.1sin(27k * 0.15)+0.15sin(27k * 0.025)+ k=1
0.25sin(27k * 0.01) from the training phase. In 1§ {utk) - k)

NMSE = N &1 (12)
the recall phase, 0.002 of the normalised mean 1 ﬁ k)

N o

WAL Ay
VY oY

— Plant input Plant out ® Netout

i ! ! ] ] ]
Fig. 5 Recall results

— Reference ® Plant out

- 6 H 1 [ { I 1 1 ]
0 0.5 1 1.5 2 25 3 3.5 4
Fig. 6 Step response without predictor
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Fig. 7 Step response with predictor

Step responses for the plant were obtained
with the control system shown in Figure 3. Fig-
ures 6 and 7 show the control response without
and with the error predictor, respectively. As
can be seen from the simulation results, the
proposed control scheme is useful for such a
tracking problem. The error prediction mecha-
nism improved the control performance by
maximum overshoot 6.5% (from 21.8% to
15.3%)

V. CONCLUSION

This paper has presented a new tracking con-
trol scheme for dynamic systems with unknown
structures by using neural networks. The
approach is based on a feedforward neural
inverse controller and a predicted error feed-
back controller. The scheme makes use of the
forward and inverse dynamics models of the
sequential recurrent network for predictive
tracking problems. The feedback error predic-
tion mechanism has improved the control per-

formance. The proposed controller can easily be

used in applications requiring fast and precise
action without prior knowledge of the plant.
The simulation results obtained for the exam-
ple plant have shown the applicability of the
proposed method to predictive tracking control.
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