Heteroepitaxial Growth of Diamond Films Synthesized by Microwave Plasma Enhanced Chemical Vapor Deposition

  • Kim, Yoon-Kee (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Jai-Young (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
  • Published : 1996.12.01

Abstract

The highly oriented diamond particles were deposited on the mirror-polished (100) silicon substrates in the bell-jar type microwave plasma deposition system using a three-step process consisting if carburization, bias-enhanced nucleation and growth. By adjusting the geometry of the substrate and substrate holder, very dense disc-shaped plasma was formed over the substrate when the bias voltage was below -200V. Almsot perfectly oriented diamond films were obtained only in this dense disc-shaped plasma. From the results of the optical emission spectra of the dense disc-shaped plasma, it was found that the concentrations of atomic hydrogen and hydrocarbon radical were increased with negative bias voltage. It was also found that the highly oriented diamonds were deposited in the region, where the intensity ratios of carbonaceous species to atomic hydrogen are saturated.

Keywords

References

  1. Appl. Phys. Lett. v.58 S. Yugo;T. Kanal;T. Kimura;T, Muto
  2. Appl. Phys. v.A57 Jiang, C. -P. Klages;M. Rosler;R. Zachai;M. hartweg;H. J. Fusser
  3. J. Mater. Res. v.8 R. Stoner;S. R. Sahaida;J. P. Bade;R. Southworth;P. J. Ellis
  4. Appl. Phys. Lett. v.62 D. Walter;B. R. Stoner;J. T. Glass;P. J. Ellis;D. S. Buhaenko;C. E. Jenkins;P. Southworth
  5. Appl. Phys. Lett. v.65 Jiang, E. Boettger;M. Paul;C. -P. Klages
  6. J. Mater. Res. v.10 Maeda, M. Irie;T. Hino;K. Kusakabe;S. Morooka
  7. J. Mater. Res. v.9 Jonh, D. K. Milne;P. G. Roberts;M. G. Jubber;M. Liehr;J. J. B. Wilson
  8. Appl. Phys. Lett. v.68 Y. K. Kim;K. Y. Lee;J. Y. Lee
  9. J. Appl. Phys. v.75 B. W. Sheldon;R. Csencsits;J. Rankin;R. E. Boekenhauer;Y. Shigesato
  10. Phys, Rev. v.B45 B. R. Stoner;G.-H. M. Ma;S. D. Walter;J. T. Glass
  11. Appl. Phys. Lett. v.66 J. Robertson;J. Gerber;S. Sattel;M. Weiler;K. Jung;H. Ehrhardt
  12. Jpn. J. Appl. Phys. v.34 T. Suesada;N. Nakamura;H. Nagasawa;H. Kawarada
  13. Appl. Phys. Lett. v.66 S. P. McGinnis;M. A. Kelly;S. B. Hagstrom
  14. Science v.241 J. C. Angus;C. C. Hayman
  15. J. Mater. Res. v.7 B. R. Stoner;B. E. Williams;S. D. Wolter;K. Nishimura;J. T. Glass
  16. J. Mater. Res. v.11 C. J. Chen;L. Chang;T. S. Lin;F. R. Chen
  17. Appl. Phys, Lett. v.63 Y. Shigesato;R. E. Boekenhauer;B. W. Sheldon
  18. Thin Solid Films v.272 Y. K. Kim;K. Y. Lee;J. Y. Lee
  19. J. Appl. Phys. v.54 F. J. Kampas
  20. Synthetic Diamond: Emerging CVD Science and Technology N. Setaka;K. E. Spear(ed.);J. P. Dismukes(ed.)
  21. J. Appl. Phys. v.77 J. M. Lannon;C. D. Stingespring, Jr.;J. S. Gold