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ABSTRACT

This paper presents a new type of fuzzy-sliding mode controller for robust tip position control of
a single-link flexible manipulator subjected to parameter variations. A sliding mode controller is
formulated with an assumption that imposed parameter variations are bounded so that certain deter-
ministic performance can be guaranteed. In the design of the sliding mode controller, so called moving
sliding surface is adopted to minimize the reaching phase and thus mitigate system sensitivity to the
variations. The sliding mode controller is then incorporated with a fuzzy technique to reduce inherently
ever-existing chattering which is impediment in position control of flexible manipulators. A set of fuzzy
parameters and control rules are obtained from a relation between predetermined sliding surface and
representative points in the state space. Computer simulations are undertaken in order to demonstrate
superior control performance of the proposed methodology.
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1. Introduction

Most industrial robot manipulators depend on
bulky design in order to minimize structural vibra-
tion of each component. This massive structural
design makes the manipulator slow and heavy;
hence, large actuators and high mounting strength
are required. The insatiable demand for high perfor-
mance robotic systems quantified by high speed of
operation, small energy consumption and lower over-
all cost have triggered a vigorous research thrust in
various multi-disciplinary areas such as control of
light-weight flexible manipulators. The flexible
manipulators, although haveing some advantages
over conventional rigid robots, have more strigent
requirements for the control system design, such as
accurate end-poing sensing and fast suppression of
transient vibration during rapid arm movements.
Furthermore, model parameter variations of the
flexible manipulator, such as natural frequency, may
easily arise in practice due to a wide spectrum of
various conditions associated with the manufactur-
ing process, dynamic modeling, operating environ-
ments and so forth.

A variety of control strategies for the flexible
manipulators have been proposed in an attempt to
discover a successful and practical feedback control.
Most of the previously proposed controllers have
been designed by treating the control system as a
determinsitic nominal problem. A few investigators
have attempted to provide control logics which
account for the sensitivity of the control system to
parameter variations. A robust control which guar-
antees stable performance of the system for all
possible variations of the system parameters was
designed by treatign the variations as uncertainties
M The properties of the ultimate uniform bounded-
ness of the solution of the system equation were
employed to formulate the controller. Sliding mode
controllers which inherently possess invariant prop-
erties to the parameter variations during the sliding
mode motion were proposed and successfull applied
to the flexible manipulators®-*. However, it is gen-
erally known that the sliding mode controller (SMC)
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requires instantaneous change(chattering) of con-
trol input in order to compensate the parameter
variations and operate effectively in sliding surfaces.
This chattering may also occur due to unmodelled
dynamics, time step in computer simulation or sam-
pling period in real-time control implementation and
delay of switching devices®. In practical engineering
systems, the chattering causes severe damages to
system hardware such as actuator. Thus, it has to be
eliminated or alleviated as possible. One way to
achieve this objective is to employ so called continu-
ation method®®. However, in this case, the trade-
off between the smothing of the control input history
and the control error must be considered.

More recently several researchers are trying to
eliminate or attenuate the chattering by applying the
fuzzy controller (FC) by adopting predetermined
sliding surface and its sign as fuzzy variables. The
perturbations measured from the imposed estimator
were used as fuzzy input variables to handle differ-
ent types of the chattering. Meystel et al."? used two
fuzzy variables; the absolute radial distance from
the origin and the absolute angle deviation from the
sliding surface to alleviate the chattering of the
SMC. None of these fuzzy controllers associated
with the SMC has been applied to the control of
flexible manipulators.

In this paper, we propose a new type of fuzzy-
slding mode controller (FSMC) to attenuate the
chattering, and apply it to a robust position control
of a single-link flexible manipulator subjected to
parameter variations. We first formulate a SMC by
assuming that imposed parameter variations are
bounded so that certain determinstic performance
can be guaranteed: In the design of the controller, so
called moving sliding surface (MSS) “? is adopted to
minimize the reaching phase and hence mitigate
system sensitivity to the variation. In addition, a
decoupled reduced-order observer is formulated to
estimate velocity state variables, while the position
state variables are obtained directly from output
sensor measurements. The SMC is then incorporated
with a fuzzy logic. We choose the position of repre-
sentative points(RP) of the sliding surface and its
gradient as fuzzy input variables. In this case, we
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can determine fuzzy control rules more systemat-
ically compared with other design methods. Com-
puter simulations are performed in order to demon-
strate the effectiveness and robustness of the
proposed fuzzy-sliding mode controller.

2. System Modeling

Consider the horizontal motion of a single-link
flexible manipulator as shown in Fig. 1. The uniform
beam that has a total length of / and width of 5 is
attached to the rotating hub that has a moment of
inertia /,. The axis oy’ is the fixed reference line
and oy is the tangential line to the beam'’s neutral
axia at the hub. Upon assuming Euler-Bernouili
beam theory, small elastic deflections, small angular
velocities and neglecting axial deflections, the gov-
erning equation of motion and the associated bound-
ary conditions are obtained as follows!®.

d'w (v,t) Fwlv,t)
El 3 +p PIE =0 (1)

EI %z“-+TU)~h90):0
w(0,£) =0

Fw (v, t)

El aUz v=1

81)3 v=1

where, E7 is the bending stiffness of the beam, p is
the mass per unit lenght of the beam, 7 (¢) is the
input torque and w(v,f) is the total displacement
give by

wv,t)=w(v,t) +v0(t) (3)

By using the assumed-mode method the system

Flexible link

Fig. 1 A single-link flexible manipulator

variables w(v,f) in a partial differential equation
(1) can be expressed as

w(0.0) =2 ¢:(0) a: (1) (4)

Here, the space-dependent function ¢;(v) is the
eigen function of the ;-th mode and the time-
dependent function ¢,(¢) is the generalized coordi-
nate of the system. After applying Lagrange’s equa-
tion, an infinite set of ordinary differential equations
which are decomposed from each other may be
obtained. Upon retaining fintie number of control
modes, a reduced dynamic model can be obtained in
the state space representation as follows:

x(t)=Ax+BT, y=Cx 9)
where,

x:[qoq'()qlq.l'”Qndﬂ]T:[lez"'I2n+2]T€R2"+2

-0 1 -
0 0 0
0 1
A= —w? —2§1a)1
0 0 1
- — wh—28wn"
=1

B=—1{010¢,(0)---0 ¢,/ (0)]”

1,
y=[ve yo ys]”

10 4D 0 D) 0
10 ¢/ 0 ¢0) 0
0

h, . ho, .
0 7¢1 0y 0 - 7¢n 0) 0

C= (6)

Viscous damping terms have been added to each
flexible mode in an heuristic fashion. In equations(5)
and (6), w, and ¢; are the natural frequency (pinned-
mode) and the damping ratio of the ;-th mode,
respectively. /, is the total moment of inertia (hub
and beam), / is the thickness of the arm, ¢'( - ) is
the modal slope coefficient, the subscript # is the
number of primary flexible modes to be controlled.
It is noted that the output matrix C is related to
non-colocated tip position sensor(y,) and two
colocated sensors: hub angle sensor(y,) and strain
gage sensor at the root(ys).

The accuracy of the reduced model (5) is very
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important in the sense of spillover problems. The
accuracy depends heavily upon the geometrical and
material properties of the flexible arm as well as on
the dynamic characteristics of actuators and sen-
sors. It may be estimated by comparing transfer
function between exact and reduced representations
or investigating dynamic response before and after
employing the controller™. Several works on this
point confirm that a sufficient finite number of
modes can provide an effectively exact model of the
link dynamics. In this study, the number of control
modes is determined from the investigations of the
open-loop responses and ciosed-loop responses of the
system by considering the participation factor of
each vibrational mode.

From the earlier discussion on the lack of knowl-
edge of model parameters such as natural fre-
quencies, a possible variation of the parameters can
be expressed as follows:

a),-:a)O_i+Acui Ci:§0,1'+A§i, Z':1,2,3,"',7l (7)

where w,,; and &,; are nominal natural frequency and
damping ratio, respectively, under the conditions of
no payload and all system parameters knwon. The
Aw; and A¢; are corresponding possible deviation
(uncertain in practice) due to, for instance, the
varying payload. Now, substituting the equation (7)
into equation (5) yields following dynamic model

x()=(A+AA)x()+BT(), y=Cx (8)

where AA=A4— A, It is noted that the variation
limits of the uncertainties of Aw, and A¢; need to be
known in the synthesis of the controller.

3. Sliding Surface Design

The control objective is to enforce the tip position
of the flexible arm to the desired set point; regulat-
ing control problem. Thus, we may set a sliding
surface in the state space as followings:

2n+2
o= 2} c,—x,:[cl Cz"'Czn+2][l‘1 Il"'Ierz]T: Gx
=

C))

where G is surface gradient vector and def (GB) +
0. Then the state of the system during the sliding
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mode motion is constrained to the subspace E***!
defined by the equation

Gx=0 (10)

Differentiating (10) with respect to time and sub-
stituting from (8) yields following equivalent con-
trol T.e in an unique manner.

Teq:_(GB)ilG(AO*_AA)x (11)

Thus, the resultant sliding mode equations are

obtained as follows.

x=[I-B(GB)'G](4s+AA) x
=A.x, Gx=0 (12)

It is seen from above equations that A4 could
have an intrinsic influence on the system behavior
during the sliding mode motion. The invariance
condition for the sliding mode system (12) to be
completely insensitivie for the parameter variation
AA is given by®

rank[B . AA M]=rank| B] (13)

where M is the state transformation matrix whose
columns are the basis of the subspace E?**'. From
the dynamic model (5), we know that the system
(A,B) is controllable. Thus, the system(8) can be
transformed into the controllable canonical form
which in nature fulfills the invariance condition (13).
This implies that the AA will act as the equation in
the reaching phase. However, the A4 will have no
influence on the system motion in the sliding phase.
From the fulfillment of the invariance condition (13)
we can design the surface parameter ¢, so that all
eigenvaluse of A.(in the absence of AA) in equation
(12) have negative real parts. This can be easily
achieved by pole assignment technique®®.
However, we know that the surface (9) is
designed without consideration of given initial condi-
tions. Therefore, the SMC associated with the sur-
face (9) may be sensitive to parameter variations
during the reaching phase. In order to reduce the
reaching phase, and hence to improve the system
robustness we modify the surface (9) to adapt arbi-
trarily given initial conditions. We first introduce

new axis coordinates as follows:
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1 n+l n+l

em =2 Coic1Z2i-1, Cm2= 2 C2:X2: (14)
C1i=1 i=1

Note that the e, axis is the function of the posi-
tion state variables, while the ¢,, axis is the function
of the velocity state variables of the flexible vibra-
tion modes. Using these variables, we construct a
moving sliding surface (MSS) in the en-en: coordi-
nates as follows:

C(tﬂ)eml(t0)+em2(t0)+a(t0); t=1h
o=1c(t)em (t) +em(t) +alt), Lt<t<ts (15)
Cp€m1(t)+€m2(f)y t>1s

Here ¢, is the time at which the sliding mode of the
system begins, ¢ (¢) is the time-vaying slope and «
(¢) is the time-varying imtercept of the ¢, axis. It
is obvious that the surface (15) goes through arbi-
trarily given initial conditions e.;(4) with corre-
sponding slope ¢ (%) and intercept ¢ (%). If the intial
states are located in the stable zone, the intercept ¢
(¢) =0 for te=[4,o0]. If the initial states are located
in the unstable zone, the intercept ¢(t) varies in a
shifting manner until the states arrive to the stable
zone. The surface moves until the slope ¢ (¢)
becomes equal to c¢,(=c¢;). The detailed moving
algorithms are well described in reference‘'?.

4. Controller Design

4.1 SMC Design

As a first step towards developing a sliding mode
controller, we take a time derivative of the sliding
surface defined by (15).

Gm(t)=¢ W em(t) +c(t) ém(t) + ém(t) +alt)

n+l
2 [ (r2ia1+ dai-1) Taici+ (2t dz:) 1‘21‘]

i=1

é (t) n+l .
+DT + o 21 Cai1 X2+ a (¢) (16)
where,
Y2i 1= — CaitWhi-1, Woo0=0
Y2 clt) C2i-1—280,i-1, G.0=0

C1
dai-1=—C2: 2wo,:_10w:-1+ Sw?-1), Swo=0
dZi:-ZCZi(agi—lwo,i-1+ Go,i-10w:-1), 6§OZO

D:[iz ot (0), 40/ (0) =1 an

Since c(t), a(t) are chosen to be step functions,
there is partition, p={0, Uz, U} such that = 5,
<Pl < Pp=ts and ¢(¢t) and q(t) become con-
stant in the open interval (5,._,, 7). Certainly we
can prove p measurable and m(p) =m.(p) =002,
Here m is Lebesque measure and . is Lebesque
exterior measure. Thus we know that ¢ (¢) =4 (¢) =
0 in the time interval /€[ f,,¢;] — p. From this fact, we
can easily construct the controller 7° which satisfies
the following sliding condition.

On6n<0 (18)

To formulate such a control law, we assume that
the parameter variations are bounded as follows.

|6w| < giwo,er |88 < yilos, i=1,2,3,-,n (19)

Here, ¢; and 7. are weighting factors representing
the limits of the parameter variations.

Now we propose following sliding mode control-
ler:

1 n+l
T:*ﬁ{g (7212201 F 72022:)

n+l
+[lf+ Zgl (g25~112i—1+g2iI2i) ]Sgn(dm)},
k>0 (20

where,

gZz‘vl:—CZ[(20)0,:'—151‘-1500,1‘—1+6g-la)(2),i—l): &0=0
i ”26'21’(7:'—1@'0,1—1(1)0‘1'—1 + Co,i—lsi-lwo,iﬂ
'f‘7’:‘4{0,:‘—16:‘—1(00,1‘«1), 70:0

Then we can show that the system (8) with the
proposed controller (20) satisfies the sliding condi-
tion (18) as follows:

ntl1
OnOm= am{§ [721'4 + dric1) X2i1
+ (r2:+ das) 22:]+ DT}

n+l
= O'm{ Z}] [7’21“1 + doic1) X2i1

il
+ (rai+ i) 22:]— ;1 (P2i1Z2i-1F F2iT2:)

n+]
—[k+ gl (i1 Z2i1 + Zoixe:) {]8gN (0m)
n+1
= g]l (dri-172i-1+ daiZ2:) Om
n+l
- gl (@i1X2i-1 + @22 |o‘m|—-/f|o'm|<0
(21

o
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Since we assume that the position state variables
are readily obtainable through the measurement
equation, the subatrix relating position state vari-
ables and output measurements is nonsingular.
Therefore the position variables obtained can be
viewed as new system’s output as follows;

X2

_ 0 0..00 _
y= . . =Cx (22)

0000..10 L2n+2

where C is an (n+1) x (2»+2) transformed output
matrix. The state-space description of the nominal
system (A, B) is decomposed, and thus we can
construct a reduced-order observer to estimate the
velocity state variables"'®. The resulting observer
for the velocity state variables takes the form

ZimLnzit Loxeya+ LisT, Toi=Airzi1+ 25
i=1,n (23)

Here,

La=— (/1i+2§0,z’—1wo.z'—1)

LiZ:“[((UO,%+/L'(/11'+2§0,zflw0,z‘—1)]
i)

Lis= 1,

In the above equation, z; is an estimated value of
transformed state variable, A, is a desired eigenvalue
of the observer and 7, is an estimate value of the
velocity state variable r,,.

4.2 FSMC Formulation

The feedback gain k in the control law (20) should
be chosen according to the magnitude of the parame-
ter variations, measurement and process noise.
However, it is difficult to favorably select a proper
k, because these are in general numeasurable.
Hence, if we choose sufficiently large £, we may
achieve fast and robust tracking control effect. But
this may cause the chattering of discontinuous con-
trol input to be increased.

When we design a fuzzy controller (FC), how to
select appropriate fuzzy control rules is the first
problem to be resolved. For this, we consider Fig. 2
that shows the motion of the RP neighboring moving
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sliding surface in the state space. RP, and RP
denote RP in the reaching phase and the sliding
phase, respectively. When the RP is far from the
sliding surface (o, ( + ) =0}, the feedback gain £ must
be chosen relatively large in order to drive the
system states to the surface as soon as possible, and
vice versq in order to reduce the magnitude of
chattering in the vicinity of the sliding surface.
Therefore, our final control is represented as follow-
ing conditional statement.

If RP is far from the sliding surface,
then feedback gain is large and vice versa.
(24)

For the construction of the FC that has linguistic
rule(24), we choose two fuzzy variables as follows:

a(t) =c(t) em (t) +em(t) (25)
BU+At)=a(t+AH —a(t) (26)

Here, At is the time step to solve the control system.
It is seen that the first fuzzy variable (25) is equiva-
lent to the sliding surface iteself (15) with «(¢) =0,
and the second fuzzy variable (26) implies the gradi-
ent of this variable. Now, two linguistic input vari-
ables are defined to describe @ and 3 as follows:

s={NB, NM,ZO, PM, PB} (27)
cs={NB, NM, ZO, PM, PB} (28)

where, NB= negative big, NM = negative medium,
ZO=zero, PM = positivie medium and PB=positive
big, respectively. Also linguistic output variable is

€m2

Gn (1s)

Fig. 2 Configuration of knowledge base for fuzzy input

variables and rules
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Table 1 Linguistic fuzzy rule base for feedback gain

“| pB PM Z0 NM | NB

N
PB P6 P5 P5 P4 P4
PM P5 Ps P4 P3 P3
Z0 P2 P1 Z0 N1 N2
NM N3 N3 N4 N5 N5
NB N4 N4 N5 N5 N6

defined to describe the discontinuous feedback gain
k as follows:

kd={N6, N5, N4, N3, N2, N1, ZO, Pl,
P2, P3, P4, P5, P6) (29}

where, Ni, Z0, Pi(i=1,---,6) are fuzzy values of kd,
Input-output relation of the FC with fuzzy variabels
(27), (28) and (29) is written by

s,¢c8 — kd (30)

Tabel 1 presents “look up” table of fuzzy control
rules adopted in the present study. These fuzzy
control rules can be inferred from the center-of-
gravity method"”. Fig. 3 represents the block-
diagram of the proposed FSMC. The basic configu-
ration of the FC comprises three componets; a fuz-
zification interface, a decision-making logic and a
defuzzification interface. In the fuzzification inter-
face, ¢ and g are estimated, and these are modified
into linguistic values s and ¢s. The decision-making
logic is the kernel of the FC since it has the capabil-
ity of both simulating decision-making based on
fuzzy concepts and inferring fuzzy control actions.
In the defuzzification interface, fuzzy output kid

Desired : Actual
,,,,, - tip position

tip position .
SRRy »I SMC|
+

Feedback gain

a

i kd Decision S -7
{I)cﬁluiﬁcnlionl—-—% ) | Ccs Fun.iﬁcalionl ]

making

FC

Fig. 3 A block-diagram of the proposed fuzzy-sliding
mode controller

decided from the decision-making logic is changed
into a numerical value for the purpose of using real
control input. From the SMC(20), the proposed
FSMC can be now formulated as follows:

T=- E{ > (raicidsioi+ Failz:) ‘f‘[/fd(SyCS)

i=1

n+l1

+ ,—21 (@2i-1x20-1+ Go2as) sgn (o)} (31)

It is noted that unlike conventional SMC (20), the
FSMC (31) has varying feedback gain which is
properly adjusted according to the commanded
fuzzy rules.

5. Simulations and Results

In order to demonstrate superior control perfor-
mance characteristics of the proposed methodology,
the nominal single-link flexible manipulator which
has physical properties and model parameters given
in Table 2, is considered. The natural frequency of
the nominal system was determined from the eigen

‘characterstic equaiton and the value of the damping

ratio was adopted from the reference®. The rigid
body mode and the first flexible mode were consid-
ered as the primary modes to be controlled.

The open-loop responses of the nominal system is
shown in Fig. 4. The vibration of the first flexible
mode was produced by taking the initial conditions
as x (0) =[0 0—0.17698 0]”. It is clear from the figure
that the amplitude decays when the first flexible
mode is assumed to be damped with the damping

Table 2 Physical properties and model parameters of
the flexible arm.

Parameters Values
Length (/) 1.0m
Thickness (/) 0.002 m
Width () 0.02m
Mass per unit length(p) 0.106 kg/m
Young’s modulus(E) 64 Gpa
Moment of inertia of the hub (/) 0.023 kg/m?
First-mode damping ratio (¢ ) 0.02
First-mode natural frequency (wo) 2.47 Hz

ok
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ratio of 0.02.

For the closed-loop control simulations, the fol-
lowing numerical values were employed: x (0) =[0.2
000]%, 2,(00=—0,57, 2,(0) =0.05, ,=A=3.0, &,=0.
2, =02, 8w, =0.2sin(2¢), 6&;=0.2sin(2¢), G=[1.00.
196 2.01 9.0773], £=0.2. On the other hand, the
moving parameters for the surface (15) was chosen

0.3 T T T T

02 e e . i

o141

oOCHt

Tip displacement (m)

Lot . i C .

) 2 4 6 8 10
Time (sec)
Fig. 4 Open-loop tip displacement of the nominal sys-
tem

N, e conventional surface (9)
—— MSS(15)

Hub angle (deg)
»

J N

0 2 4
Time (sec)

conventional surface(9)

|

Torque {N.m)

Torque (N.m)
o
o

Time (sec)

as 0.001sec for the dwelling time, 0.09 for the switch-
ing vicinity magnitude, 0.15 for the rotating and
shifting boundary width. In addition, time-delay sim-
ulation scheme® was adopted to emulate real-time
implementation of the controller. Time step for the
Runge-Kutta integration was chosen by 0.001 sec and
0.05 sec for the sampling period.

The controlled responses with the SMC (20) are
presented in Fig. 5. At the beginning of the system
motion, we can observe the nonminimum phase
character which frequently plagues existing control
methods to be successfully implemented. Despite the
nonminimum phase character of the system, the
system is successfully controlled by the SMC. One
can clearly see that the controller associated with
the moving sliding surface (15) considerably
improves the system response by shortening the
reaching phase without increasing the maximum
magnitude of the control torque as well as the un-
desired chattering. This is due to the increment of
the fastness for the velocity state variables of each
flexible mode represented by the e,.. Here, ¢,, and

0.25
0204H et conventional surface(9)
— MSS(15)
E o154
H
E .10 -
Q
pid
o
2
T 0054
=g
=
0.00 4
e 0 2 4
Time (sec)
008
conventional surface (9)
0.044
§ ool ﬁ—wmmw "
»
0.044
008
0.08
004 —— MSS(15)
§ ooy AR
17}
0.044
£.08 v v
0 2 4

Time (sec)

Fig. 5 System responses with the SMC
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grade

kd

Fig. 8

15 1.5
NB NM ZC PM PB NB NM ZO PM PB
1.0+4 1.04
%
el
i
0.5 © 0.5
0.0 . / ¥ } . 0.0 , 4 . } .
45 10  -05 0.0 05 1.0 1.5 15 10  -05 0.0 05 1.0 15
(2) Membership function of s. (b} Membership function of cs. b
Fig. 6 Membership function of input variables (a) Membership function of s.
(b) Membership function of cs.
' 025
R sme
£ —— FSMC
©
Py 5
2 8
s 5
E ]
T o
2
0ood i
005 T
[} 2 4
Time (sec)
0.08
B 00y, ( ——— SMC
z c \ .‘
: § oo M’ T
o w B
2 ool
0. -0.08
0.4 008
—E~ 02 — FSMC 0,044 ] —— FSMC
é f c “\
Py QQ.WUL ® 0004 U [
z 1 3 ]
E 0.24 0,044
o 1 I ) 7 T
Time (sec) Time (sec)
Fig. 7 Comparison of system responses between the SMC and the FSMC
R
° ems differ from the tip displacement and tip velocity
§~ so that there is steady state error due to the time
B delay (sampling period) and the discontinuous con-
: trol input. Fig. 6 shows the membership functions of
7 .the fuzzy input variables of s and ¢s. It is noted that
3 the membership functions of s and ¢s are selected to
AN
8 J be same. Fig. 7 compares controlled responses
d -

0

Surface of feedback gain for the proposed

FSMC

between the SMC and the proposed FSMC. The
control accuracy is also enhanced maintaining the
system robustness. Fig. 8 presents surface of the id
(s,cs) obtained by the center-of-gravity method. We
can easily see that this represents in nature the fuzzy
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control rules given by Table 1. The results presented
in this study clearly justify that the proposed FSMC
favorably eliminates the chattering of control input
and hence improves the control performance of the
flexible manipulator subjected parameter variations.

6. Conclusions

A fuzzy-sliding mode controller was formulated to
attenuate the chattering and successfully applied to
the position control of a single-link flexible manipu-
lator. A robust sliding mode controller associated
with the moving sliding surface was synthesized to
account for the parameter variations such as natural
frequency. This controller was then incorporated
with a fuzzy technique which features two fuzzy
variables obtained from the sliding surface. It has
been demonstrated that the proposed controller fur-
nishes favorable control responses such as signifi-
cant reduction of the chattering and enhancement of
control accuracy.
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