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ABSTRACT

The sensor response of a piezoelectric transducer embedded in a fluid loaded structure is modeled

using a hybrid numerical approach. The structure is excited by an obliquely incident acoustic wave.
Finite element modeling in the structure and fluid surrounding the transducer region, is used and a plane
wave representation is exploited to match the displacement field at the mathematical boundary. On this
boundary, continuity of field derivatives is enforced by using a penalty factor and to further achieve
transparency at the mathematical boundary, drilling degrees of freedom (d. o. f.) are introduced to
ensure continuity of all derivatives. Numerical results are presented for the sensor response and it is
found that the sensor at that location is not only non-intrusive but also sensitive to the characteristic

of the structure.
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applications. Although many research studies con-

1. Intorduction cerning piezoelectric materials have been performed

in the area of ultrasonic transducers®~®, more inter-

Piezoelectric ceramics have proven to be effective est has been directed towards applications in smart
as both sensors and actuators for a wide variety of materials or structures which would bring structural
*Member, Department of Engineering Science and revolution®”. Varadan et al.® have presented a
Mechanics, The Pennsylvania State Univer- piezocomposite acturator for active underwater

sity, University Park, PA 16802 attenuation control of a normally impressed acoustic
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field. An electro-mechanical model of the bilaminate
piezocomposite design with an analytical discusstion
has been presented. The ability of active cancella-
tion of reflection at normal incidence has been inves-
tigated. Barbone and Braga®™® have evaluated the
sound radiated from an electrically excited laminat-
ed piezoelectric plate in an acoustic fluid by employ-
ing an invariant imbedding technique. They have
investigated the possibility of active cancellation of
sound reflection at obilque by prescribing the volt-
age on the finite size electrodes of the piezoelectric
plate. However, in their approach, periodic array of
the piezoelectric elements on the structure was
assumed ; this is not practical since piezoelectric
elements can be positioned arbitrarily on the struc-
ture in practice.

There are many theoretical and numerical chal-
lenges in simulating such a system and its
passive(sensor) and active(actuator) functions. In
this paper, modeling of piezoelectric sensor is stud-
ied. Piezoelectric sensor can be applied in many
areas, for examples, damage detection in structures
and highways and noise control of automobiles and
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Fig. 1 Sensor problem: voltage induced in PZT sensor
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‘aircrafts. Figure 1 shows a simple model of sensor

function in an acoustical enviromnent ; some signals
come in and are sensed by the piezoelectric sensor
through a change of the displacement field on the
structure. In this model, the sensor function can be
analyzed by having the model enclose the sensor
element only.

2. A Hybrid Finite Element Modeling

In the sensor problem, there are three regions, the
structure, the piezoelectric element and the fluid
(Fig. 1). The piezoelectric element is embedded in the
structure, and the top surface of the plate is exposed
to the infinite fluid medium while the bottom is
vacuum. Finite element modeling is used in a region
including the piezoelectric element as well as the
structure and a portion of the fluid medium. The
piezoelectric material is anisotropic and elas-
todynamic and electric fieids are coupled. Therefore,
two kinds of variables, displacements and electric
potential, are used in the piezoelectric material.
Solid region for the structure can be considered as a
special case of piezoelectric material which has no
electric field. The fluid is considered as inviscid fluid
and also described in terms of the displacements and
irrotational constraints are included to eliminate
zero-energy deformation modes. To model the infi-
nitely layered media, one can put a mathematical
boundary surrounding the piezoelectric element.
Finite element method can be used to analyze this
region (See Fig. 2) and a proper condition must be
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‘Fig. 2 Finite element model
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specified at the mathematical boundary. In the
absence of piezoelectric element, the theoretical
plane wave solution is already known. If we assume
that the model is large enough so that the scattering
due to the piezoelectric sensor is small at the mathe-
matical boundary, then a plane wave representation
for the infinite plate immersed in the fluid can be
used to represent the boundary conditions for the
finite element model. Matching of the plane wave
solution at the mathematical boundary in terms of
displacements and their derivatives is performed by
using penalty method to have transparency of the
boundary. To further achieve transparency at the
boundary, drilling degrees of freedom (d. o. f.) are
introduced at each nodes of the finite element
model®.

2.1 Finite Element Formulation
The constitutive equations for the piezoelectric
region can be writtern as“®

T=C*S—h'E and D=hS+b’E 1)

where the superscript 7 denotes a matrix transpose,
T is a stress tensor, S is a strain tensor, D is the
electric displacement, E is electric field, C* is the
elastic stiffness tensor evaulated at constant E field,
h is the piezoelectric coupling constant and b is the
dielectric constant at constant strain. The electrical
field E is related to the electrical potential ¢ by E
=—Vé¢. u"={us un» u.) is the displacements in the
structure and piezoelectric medium. In the fluid
region, displacement is taken as a variable and
irrotational constraint is taken into account by using
constraint parameter. The slope constraint that has
to be imposed on the mathematical boundary is
included by using penalty method. The drilling d. o.
f. at each nodes of the finite element model is enfor-
ced to be same as the physical rotation in a contin-
uum using penalty method.

If we assume that this is the steady state case and
after performing discretization, the finite element
equation becomes

MF 00 Kp+a/Kr, 0
{_a)2]> 0 Muu0:|+[ 0 Kuu+7Kw

0 00 0 K.

0 V a’Frp
+a’Kr5Ku¢ J}{ U }'—"{ F‘+a’Fr,»} (2)
Koy @ Q

where V, U, @ are nodal displacements in the fluid,
solid and nodal electric field, M-, M., are mass
matrixes in the fluid and solid, K, K, are stiffness
matrixes in the fluid and solid, K.,, K, are pi-
ezoelectric coupling matrix and dielectric stiffness
matrix, Kr is a matrix derived from slope constraint
on the mathematical boundary, K, is a matrix for
the drilling d. o. f. constraint, @, F are nodal point
charge and nodal force vectors Fr is a vector der-
ived from slope constraint. ¢ is the penalty factor for
the slope constraint and y is a parameter for the
drilling d. o. f. constraint. Solid region for the struc-
ture can be considered as a special case of pi-
ezoelectric material which has no electric field. K-
includes the constraint parameter, C», in the mate-
rial property matrix for the irrotational condition of
acoustic fluid. At the interface boundary between
the solid and fluid, normal displacements in the fluid
and the solid are matched and the tangential dis-
placement obeys slip boundary conditions. To slove
this problem, we add extra degrees of freedoms for
the tangential displacements of the fluid at the inter-
face boundary. Boundary conditions for u, v, and
their derivatives ii,, D are calculated from the
solution of the obliquely incident plane wave prob-
lem.

2.2 Obliquely Incident Plane Waves

We consider an infinite flat plate in which the
upper surface contacts the fluid medium and the
bottom is exposed to the vacuum (see Fig. 3). When

vacuum

Fig. 3 Infinite flat plate with fluid and vacuum environ-
ments
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the fluid is considered to be inviscid, by superimpos-
ing the incoming and outgoing waves, displacements
in the fluid and the solid region can be written as""

v=n;Ajexp(k; r)+ nfAfexp(ikf:r) 3
u—piAtexp(iki - r)+ pr Arexp(ki - 1)
+ ptr Atexp(jki+ r)+ prArexplikr-r) (4

where A: is the amplitude of incident wave and Af
is the amplitude of reflected wave. Subscript L
refers to the longitudinal wave and T refers to
transverse wave. Superscript “+ " indicates the posi-
tive direction and “—" the negative direction. Aj,
A;i, Af and A7 are amplitudes of incoming, outgoing
longitudinal and transverse waves in the solid plate

respectively. k,, k. and k; are the wave numbers in
the fluid, longitudinal and transverse directions in
the solid. kj;, BF, ki and ki are the wave vectors in
the fluid and longitudinally plus and minus and tran-
sversely plus and minus directions in the solid
respectively. ey, ex, e, are the unit normal vectors in
rectangular coordinate. Snell’s law and the boundary
conditions at the top and bottom surfaces give five
relations. Therefore five unknown variables, A%, A},
A7, A% and A7 can be find. After substituting these
unknowns into equations (3) and (4), we can obtain
the displacement at a desired certain point, say, at
the boundary of the finite element model.
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3. Numerical Results and Discusstion

3.1 Infinite Plate without Piezoelectric Sensor

To verify the feasibility of this approach, a flat
steel slab without a piezoelectric patch and is
exposed to the fluid and vacuum, is considered (Fig.
3). The region surrounding the piezoelectric sensor
and its vicinity is treated using finite element model-
ing (Fig. 2). If the part is substituted with the same
material of the steel, this model will be identical
with the infinite slab problem which can easily be
dealt with using the plane wave representation. The
width and height of the finite element model is 200
mm by 100 mm, Total 1347 nodes are provided and
8-node element is used. The plate is steel with 10 mm
thick, the frequency of incident wave is 10 kHz, the
oblique angle is 10°, and the amplitude of the inci-
dent wave is 0.1 mm. The range of constraint param-
eter in the fluid stiffness matrix is 2-20 (times bulk
modulus of the fluid). Penalty factor for the slope
constraint is set to 10 to 10 and the range of
drilling d. o. f. constraint penalty factor is 10* to 108,
In these ranges, optimal parameters are searched by
an optimization technique.

The displacements U, and Uy at an arbitrary
section (x=75mm) are shown in Fig. 4(a) and (b),
respectively. Figure 4(c) and (d) represent the dis-
placements of the solid, U/; and Uy, at the interface
boundary. The finite element results show good
agreement with plane wave solution in the fluid and
the solid regions.

3.2 Infinite Plate with PZT Sensor

For the piezoelectric sensor problem, one PZT
patch embedded in the flat plate is considered (Fig.
1). The size of the PZT element is 1 mm x 10 mm in
thickness and width respectively. The material prop-
erties of PZT-5H is used for the PZT element.!'?
The incident wave conditions are in the same as the
previous case with different incident angles. The
finite element model size and the number of nodes
are the same as in the previous case. Fine meshes are
introduced in and near the PZT. Before solving the
PZT inclusion problem, the constraint parameter in

Amplitude (V)

the fluid element and penalty factors for the slope
and drilling d. o. f. constraints are searched such that
the finite element result without the PZT element is
close to the plane wave solution. By using these
constraint parameters, the sensor response at the
PZT is found.

Figure 5 shows the excited voltage output at the
sensor when the incident angle is changed. In this
figure, a peak of excited voltage amplitude is shown
at 17° and slightly increased after the peak. To
explain this result, the wave propagation phenome-
non in the infinite flat plate with fluid loading is
considered. Generally, there are two wave modes in
an infinite plate: symmetric and antisymmetric
modes”?. For the first mode, called longitudinal
wave, the vertical displacements on the boundaries
of the plate are identical in magnitude and opposite
in sign. For the second of these oscillations, called
flexural wave, the displacements on the boundaries
are identical. The propagation velocity, ¢s of the
longitudinal waves in the infinite steel plate is 5212
m/s"?. If the incident wave speed is close to ¢s, the
coincidence occurs. When the fluid is water, the
coincidence angle is 16.73°. This angle is close to the
location of the peak in Fig. 5. Therefore, the first
peak is related to the coincidence of longitudinal
mode in the infinite plate. Also, the flexural wave
speed of the plate is dependent on the excitation
frequency'?. For the steel plate with 10 kHz excita-
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Fig. 5 Excited voltage on the PZT sensor (frequency =
10 kHz)
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tion frequency and the previously given conditions,
this speed is 972.25 m/s which is smaller than the
wave speed of water — 1500 m/s. Therefore, coinci-
dence due to the flexural waves at the given condi-
tion, does not happen. This is true in Fig. 5 where
there is no second peak, and after the first peak, the
amplitude of the excited voltage is gradually in-
creased with the incident angle. If the freuency is
increased up to 23.8 kHz, which corresponds to the
coincidence angle at the given conditions, then coin-
cidence can be seen.

From the sensor response, it is clear that the
sensor is sensitive to the characteristic of the struc-
ture.

4. Conclusions

A hybrid finite element program, which is com-
bined with the plane wave solution of the infinite
problem and the slope information at the mathemati-
cal boundary is included, has been developed for the
sensor problem. By comparing the result of this
program with the plane wave solution in a flat plate
immersed in a fluid, the feasibility of this approach
has proven. In the sensor problem, the excited volt-
age at the electrode due to the obliquely incident
wave has been found according to the increased
incident angle. This response shows the coincidence
of the longitudinal wave in the infinite plate. Thus it
is found that the sensor is sensitive to the character-
istic of the structure. In this approach, the fluid is
considered to be inviscid and this is true as far as the
model domain is sufficiently large and the local
effect of the interface boundary is negligible.
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