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Abstract

This paper addresses the problem of identifying the class of all stable system transfer functions that

interpolate the given partial impulse response sequence. In this context. classical Pade approximations
that are also stable, are shown to be a special case of this general formulation. The theory developed in

this connection is utilized Lo obtain & new criterion for determining the modcl order and system

parameters for rational systems, and, further, to generate nonminimum phase optimal stable rational

approximations of nonrational systems from its impulse response sequence.

I. introduction

This paper addresses the problem of identifying
the class of all stable system transfer functions that
interpolate the given partial impulse response
sequence. Although classical Pade approximations
match the given impulse response sequence io a
maximum extent and are optimal in that sense, the
systems so obtained need not be stable and hence
they may not be attractive from physical consi-
derations. In this context, consider the problem of
identifying a linear discrete time.invariant, causal,
slable system with an unknown transfer function H
(z} from partial information regarding itself. Since
the system is causal, it has a one-sided power series
expansion given by
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It follows from (1}, [2) and untiorm convergence that
the transfer function Hiz) is analytic in [zl {1 and

uniformty continuous'' in |z| <1 [1. 2]. Clearly, the
sequence (hy }; , Tepresents (he impulse response
of the system and when the available information is
of the form #;, £=0—n, the system identification
preblem in the rational case becomes equivalent to
a Pade approximation problem. In that case. it is
easy (o show thal rational ARMA(p, g)-type appro-
ximations that match the given data are unique pro-
vided {Pade approximation) p+4g<n{l., 2. These
approximations, however, need not be stable and
hence from physical considerations they may not be
acceptable. For example. consider the stable (mini-
mum phase} transfer function Hlz) =¢~ 3% The ARMA
(1. 1} Pade approximation of this function is given
by Bl(z)/Alz)=(2—32)/(2 + 3z2), and it represents an
unstable system since A(z) has a zero in (2] (1.

In the rational case the identification problem is
equivalent to finding the system mode) order (p. q)
and the system parameters. Given the parttal im-
pulse response sequence, the system model can be
established from the invariance of the rank property
associated with certain Hankel matrices generated
from this data. Thus, in particular, with %, %2> 0,

deneting its impulse response sequence as in (1}, let
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] Note Lhat the use of the vanable z {rather than z ') here translates all stability argumentis into the compact region |z| <
1. H(2) is said to be minimum phase If it is analytic together with is inverse in [z] < 1. Since stable functtons are free of
pales inin |2] < 1. in the rational case they are analytic in |z] < L.
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represent the Hankel matrix of size k Xk generated
from Ay, hy. --hz . Then, for a rational system with

degree p.
rank Hy=rank H,=p. k> p (4)

and several singular value decomposition technique
have been proposed for model order selection based
on ithe above rank condition {3, 4]. Equation (4)
shows the linear dependence of %4, %45 on
their p previous terms, and it represents the finite
degree nature of a rational system. Although these
techniques have the advantage that they can make
use of all available impulse response data. they
need not lead to stable systems. Moreover, the above
rank condition is not valid in the case of systems
that are not rational, since they do not represent
finite degree systems. The problem in that case is to
obtain equivalent finite degree stable rational
approximations that capture all the key features of
the original nonrational system in an optimal man-
ner by making use of the given data. Such a rational
approximation should Interpolate the given infor-
mation, and preferably be of minimum possible
degree.

In this paper, we address this problem and obtain
closed form solutions for the class of all stable
transfer funetions that interpolate the given partial
impulse response sequence. Specifically, by making
contact with the Schur problem {5] in section II, it is
shown in section III that the theory of bounded
functions (Schur functions) can he utilized to obtain
all stable solutions to this problem. In this context,
a new model order selection procedure is proposed
here that utilizes the finite degree property of a
rational system. Rational and stable approximation
of nonrational systems is described in section IV, by
making use of ideas developed in section IIL
Although various authors have addressed related
problems in the past utilizing this approach [6)[13],
some interesting new observations will show that
rational system identification as well as stable
rational approximation of nonrational functions can
be realized from the same formulation of the Schur

extension problem.
Il . The Schur Parametrization

To start with, a tunction d{2) is said to be bounded
(Schur function), if

i) dlz) is analytic in |21 (1
and (5)

W 1d2a] < 1, in 12| (1.

Thus 2% 1/{12 +2z), ¢ ! 9 all are bounded functions,
the later representing a nonrational one. Because of
the analyticity in [z| (1, every bounded function
possesses a power series representation of the form

d2)=% dy2* |z] (1, (6)
ko

that is valid in [z < 1. If 4(2) is rational, then |4(2) |
< 1in [z| {1 also implies d{(2) is free of poles in |z|
=1 and hence d(z) Is analytic in |z| < 1. As a result
d(z) represents a stable system.

From Schur's Theorem [51. d{2) given by (6}
represents a bounded function iff

[—DyD, 20, k=0—x, (7)
wltere

dg 0 0 - 0

d; d() o - 0

Dy = dﬁ d, do -~ 0 (8)
dy dy_y dy—g -+ dy

represents the lower (or upper) triangular Toeplitz
matrix generated from d,. { =0-»k. Further, strict
inequaljty is maintained in (7) under the additienal

constraint

= [ mt—1dtem 2 dp) o (@
Givenl a partial set of coefficients d,. #=0—n, that
satisfy {— D, D, > 0, “the problem of coefficients” is
to obtain all bounded functions d(2) such that the
power series expansion of d{z) matches the given

coefficients. i.e.,

d(2)=% dyz*+ 01", {(10)

L)
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An algorithm introduced by Schur in this context
answers this problem, and as we show below. it
forms the basis for our approach to the present
parametrization problem. As Schur has first observed.
if /{2) represents a bounded function. then, so does
the function [5]

1 da-do)
d&= T o

d(0)=d,. (11)

This follows by noting that, since 4(0}{ i1 and |d{2)|
<1, in |z] {1, the only possible pole of (2] in |z{{
1 is at 2=0, and it is cancelled by the zero of

d(2)-d(0)

12
1-d*(0)d(2) (12)

at z=0. Thus d,(z} Is analytic in |z| ( 1. To prove its
boundedness in |z] {1, we can make use of the
maximum modulus theorem (14, 15). At any z=7re”
in [z]{1. let dire/'}=Re*™, tne |R| (1 and by di-
rect expansion, we get

dire’)—d(0)
1 —d*(0)dlre )

2_ =R —1d(0)]?)
[1—-d*(0)Re’*1*

1- =0.

(13)

Using this, (11} gives
: !
Id (re’) | s 0{r<{1

and as r—1—0, by maximum modulus theorem,
since a functien that is analytic in any closed region
attains its absolute value only on the boundary not
inside that region, we get

ld\@ < 1in |z] (1. (15)

ie.. d,{2) given by (11) represents a bounded func-
tion provided d(2) is bounded. The above argument
also shows the boundary value di¢’’) defined by the
internal radial imit lim d(re’") is bounded by unity
for almost all . ot

In the rational case, since 2=0 is not a pole of &,
{2). from {11) we obtain that the degree? of the new
bounded function {2} never exceeds that of d{z), Le.,

Md () < 8ldiz). (16)

with inequality iff the 1/z factor in (11) cancels a
pole of (12) [16l. Since this cancellation can occur
only at 2= oc, from (11)-{12}). degree reduction happens
iff the denominator term 1 —d{0)* d{z) satisfies

1-d*0M@)],-..=0,

or
ld (N (dldizh = dizddu2) | .-p= 1, (17}
where

diz=d*"(1/z") (18)

is defined to be the paraconjugate form of di{z).
Clearly, the paraconjugate form represents the ordi-
nary complex conjugate operation on the unit circle.
In particular, if

botbyzt ot byt

dia) = aytaz+- t+ayz? (19
represents a degree p rational function., then®
bob}
N =p—-1=d@d2M,.,=—4 = 1. (20)
204y

Note that if 3(d,(2)) = p, d(2) does not satisfy (20),
then, and rewriting {11), we get
dl0) + 2d,(2)

1 + 2d*0)d (2) (21)

d{2)=

and because of the z-factor that multiplies ¢,(z} in
(21), it follows that to respect the degree of d(2). the
numerator polynomial of 4,(2) must be at most of
degree p-1. As a result, its denominator must have
degree p and hence, whenever there is no degree

reduction we obfain the representation

d,\(z)= Sorfizte S

. 22
ot gz + g%+ + g,28 (22)

The bilinear transformation in (11) maps the inside
of the unit circle onto itself. Thus, in general, with (2)

2 The degree A[H(z)) of a rational function H(2) equals the totality of its poles (or zeros). with multiplicities counted, includ-

ing those at infinity.

3 Equation (20) represents the classical Richards’ condition |16] for degree reduction.
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representing an arbitrary bounded function and
with

Sk = d40), (23)

(11) translates into

L dd2)—s,

f = .
y 4,(2) z | —sidnz) (24)

of,

s+ 2dy ()
d =0 bl L
Wz} Y 42ty (D) k=0, 125)
whith the understanding that dg(2) = ¢(z). The above
Schur algorithm in (25) can be recursively updated
and alter n such steps. we gel

a(2) =

b,-t2) 25, 4 a, ualel +z2iz a,,_ 12) 538, 12)d, 4 1(2)

(a,_ 1(zl+zs,,b,, .(z))+z(sz @)+ sya, (2, {2)

_ b al2) + 2 a, (2]a’,,4 2 (26}

v

(1,,(2,) + 4 bntz)dn + |(Z]

where a,(2) and b,(2) are in general two polynomials
of degree n. and

al2)=2"a, (2)=2"a21/z%, (27)

b,,(z) = 2% by, (2) = 2" b1 f27) {28)

represent polynomials reciprocal to «,(z) and b,{2)
respeciively that satisfy the recursion

a(2)=a,_(2) + z2s, B-n" W2l nz1 (29)
and
b2 =b, (2 ¥ 25, dy_2), n 2 1. (30}

a,4z) and b,42) are defined to be the Schur polyno-
mials of the first and second kind respectively. No
tice that, if d(2) is rational to start with. application
of the above procedure will result in a rationat
bounded function d,.,(2} for every n, and, further

from (186), in that case

My + 1) < 5d(2), » 2 0. (31}

From {26), the iterations in (29)(30) start with
a2 = 1. bgl2) = s = d. (32)

Using (29){30), it is easy to show that a2, n=1— x,
represent sirict Hurwitz polynomials®. To see this, a

direct calcuation gives

a,12)a,.12) ~ 5,42)b,.(2) = (1 — |5, | P Na,, -, (2}
a, \f2b=b,_\(2)h,_ .20 ) 0, (33)

which gives

l byle™) l l—!’(l-—ls,,lzl

ale ™) @ le ™ |2

and using this in (29), we obtain

<1, 120, (34}

Ol —Isel) < lanl ]l <TI(1 + [s]), 12l < 1. (35)
L | k=1

that shows the strict Hurwitz character of «,{z).
Returning back to {26), d(2) represents a bounded
function for every choice of the arbitrary bounded
function 4, , (2} there, and in particular also for d,, , ,
(2) = 0. Thus b,(2)/a,(2) itself is bounded and. more-
over, from {34), (26). a direct expansion gives

"

piz] 2t d,,..(Zl[I[1—|$k|2]

dlz) ~—"= = —— = =07
@Rl g (z)(a,,(zl 420, (z]d,, )

i.e., the power series expansions of the bounded
functions d{z) and b,(2)/a (2) agree upto the first n + 1

terms. However, d(2) in (26) contains an arbitrary
bounded [unction d,.,,(2). and hence the above

terms must be independent of 4,4 ,{2). and they
must depend only on a,(2) and b,(2). Thus, for every
arbitrary bounded function of &, . ,(2), we must have
the interpolation properily

_b”[ﬂ_z;;"[z]d'1+ ‘{zl - \‘”‘ d; 0™, (36)

dfz) = -
a2+ 2 b (2d, (1) *0

and the ;" s, £=0-— », can be determined from the
Schur polynomials a{z2), &:(2) in (26)(32).

Conversely, {36) is completely specified by the
first (n+ 1} coefficients {d;}};. o or from the Schur
polymomials 42} and 4,42). To complete the recurions
in (29){32). only the coefficients s, 2=0—>#n. arc
required and they can be obtained recursively from
the given data d, = 0—>#n(17]

4 A Hurwitz polynomial is free of zeros in 1z] { 1, and a sirict Hurwitz polynomial is free of zeros in |z| < 1
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n-1 "
. a,_ ()Y di 2t
kgoai” Nd, » { n-1@) 2 A Hn
Sp = o = N .
-5 pm-lr g _ |y :“I *
-2 07 k 1 b)Y d,z2 }
k-0 k=1 n—1
nzl. (37)

where { }, represents the coefficient of 2% in { . Using
this, a,{z) and bz} can be computed recursively,
and the class of all bounded f{unctions that
interporate the given coefficients d,, k=0-—-n, is
given by d(2) in (36)7.

3. Parametrization of Stable Systems

In general. the given impulse response data k., k=
0—n, do not form part of & bounded function, and
to make use of the above formulation in section II. it
is necessary to ‘prepare’ this data so that it
confirms with a bounded function. To attain this
goal, consider the matrix

h() O L. 0

=| A - 0

H»_ :] kﬂ ) : (38)
hl hﬂ-l ho

and let 1% (s} represent the largest eigenvalue of H,
H,. Then, clearly, the sequence

dy= :“‘—.Z,,)l,[n)‘k=0->n. (39)

n
satisfies (7) with inequality, and hence qualifies as
the first n+ 1 coefficients of a bounded function®.
Recursive determination of the coefficients s, £=0
—n from (A.7){A.8). together with ayz), k=0—>n
using (29)-(30), dives

bl +z a2, *
H{Z‘=x,, - {ﬂ Z_‘_,a;{z_}.__+|j! .__E hkzk +0[2" q I’
af) +zblad, 4 (2) *7°9 (40)

to be the class of all transfer functions thatl are ana-
iytic in 12| {1, free of poles in |z| £ 1 and interp-
olate the given parntial impulse response sequence A,
k= 0—n. Equation {40) can be given two interesting
interpretations:Firsi, il a system transfer function
H(z} is rational to start with. then its representation

as in (40} after n steps of the Schur algorithim will

imply that &,;,(z) must be a rational function.
Similiarly if H(2) is nonrational to start with. then
d, +(2) must be nonrational in (40).

The alternate interpretation shows that given 4,
A\ .- h, equation (40) represents all stable system
transfer functions both rational and nonrational
that interpolate the given data, and they can be
obtained by varying d,.,l2) over all bounded
functions. Thus even if the given data corresponds
Lo a nonrational system. ithe freedom present in the
choice of d,,,(2) in (40) can be utilized for rational
approximation of H(z) by appropriate choice of
rational bounded functions 4, ().

The above discussion shows that d, +,(2) can be
utilized for rational system identification as well as
rational approximation of nonrational systems. [n
particular. if d,,,(2) is chosen to be a rational
bounded function, then since 4, ,(2) and H(z) are
free of poles in |zl <1, H(2) in {40) represents a
stable regular rational transfer function (analytic in
|z] < 1) that matches the gitven coefficients”. As a
resuit, the class of all stable rational functions that
interpolate the given impulse response sequence is
obtained from {40) by varylng J,(,(2) over all
rational bounded functions.

[V. The Rational Case

If 4(2) tn (26) is rational to start with, as remarked
earlier repeaied application of the Schur procedure
will result in rational bounded functions d, . {2)
that salisfy the degree constraint in (31). As a

S If we let 4, ; ,(2) = A(2). a regular (analytic in {z] < 1} all-pass function in {37). then d(z} generates every all-pass function
that satisfies the above interpolation property. In general, if Al2) is a regular rational all-pass function, the denominator
in (37) is only Hurwitz, and, hence, it can possess zeros on the unit circle. However, the reciprocal nature of the
pole/zero pairs in an allpass function makes 4(2) in its irreducible form a regular rational all-pass function. Notice that
the minimum degree of such a regular rational all-pass function is n + 1 and It corresponds to ¢, , 1(2) = * 1. Since only
(n + 1} coeflicicnts are matched by any such all-pass function, it folows that no stable all-pass approximations are poss-

ible in the z-domaln in the Pade sense.

6 If x,,=2,(n) in (49), then the singularity of J, tn (42} forces a unique all pass solution with degree equal to the rank of J,,.
7 d, + (2) nonrational implies H(z} is also nonrational. in that case. although is analytic H(2) in |z] { 1. as an example due
to Fejer shows, a priori, H(zl need not represent a stable system [14, 19|.
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resul, from (36) and {(40), it follows that every
stable rational function H{2) can be represented as
in (40} where 4, (2} is a unique rational bounded
function that satisfies

dMd, 4 112N < SH(z)). {41)

and degree reduction in (41) happens according to
(19) {20). Thus il H(z) represents a stable ARMA(p, 4)
system with p?¢ in {40), then 3(H(z)) = p and since
(6y8,1= 0, it follows from (20), {(31) that

d, 2N =p (42}

and further using the degree arguments as in (21)-
(22), we obtain®

_ f2) =___[0+f|2+“' + 12!
22 1+gz+gez+-+g,2"

N -u
{43)

(Since g{(2) is strict Hurwitz, g,#0 and it is
normalized here to unity) Substituting (43) into
(40} we get

badgla) F 2/l ada) 5\ by oanr),
ad2g() +2f12) btz *=° (44)

H(2)=X, -

Since every rational system after repeated appli-
cation of the Schur procedure has the above rep-
resentation for any n, where fiz)/g(z) is a unigue
rational bounded function as in (43), we can make
use of the degree consiraint of H(z) in {44) to obtain
this unknown bounded function. Towards this,
notice that the formal degree of both the numerator
and denominator of {44) is n + p, and to respect the
ARMA(p, q} nature of H(z). we first equate the
denominator coefficients of 2"*', 2"+2...27%" to
zero. However, as shown in [17], equating the
coefficients of z°*1, 22 2. z2*" in the denominator
to zero implies that the respective coefficients in the
numerator are also zeros. As a result, we obtain n
equations from the denominator coefficients of 2 ',
2712 z#t" and p.q equalions from ihe remaining
numerator coefficients of z¢"!..-- 2", Thus we have n
+ p-q equations and 2p unknowns g,=1—p and f;
=0— p—1. Clearly the minimum value of n is given

by n = p+q and In that case the resulling 2p

equations in 2p unknowns can be rcpresented in

matrix form as

Ax=b {45)
where
A=
-

aﬂfq' o - 0 (5} 0 0
Apyg-1 Qpayg >+ O : b:, 0

Quvr Quuu > Upyy b,:-| b,:. PR b;

@ ax ap bprgoy by o b: {46)

bo by by apy, (‘I"'W- PRI I

¢ bu bn--z 0 ﬂ/.'.q df;-—z

0 0 = b, O 0 oy

0 0o - & 0 0 - a
x=|gp&p-1 B2 8\ foor Jpoa hH ol 47)
and
b=[00"’00ﬁ+‘3'“ a,.|lb,,b/,-| e b,,ill {48)

Here a;. & k=0— p +¢ represent the coefficients of
the p + q degree Schur polynomials a, , (2) and &, .+,
(2) respectively, i.e..

Ay =ao v a2 tagz+o da, 20T (49)
and
bp.‘,[2]=bo+blz+b,2+“-+b,,4uz’°'”. (50)

Note that p +q represents the minimum value for
the available data poinis n, and il a larger number
of such data is available, then thesc equations can
be meadified to accomodate that situation leading to
an overdetermined systemn of equations in (45). At
the correct stage, (45) is guaranieed to have a
unique solution that results in a bounded function
for f(2/£(z), and the unknown system parameters
of Hiz) can be expressed in terms of the g,'s and f»’
s so oblained. In fact, from (44), with

Hiz=G& o0z o 0,20
Pz}  Po+Pz+t-- +P.2"

rry
= St 0zt 51)

k=0

8 The coefficients of f{z) and £(2) in (53) are generic. and they differ from that 1n (22).
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we get

x k-1
Pk?iﬂ“i&’b—.‘ +£ob:-.‘fk~|—"- k=0—>p {52)
and

A k=1
O =Yp4o (L b:84-i + I - fo-i-i). k=0—q. 53]

Clearly, stability of H(z) and the interpolation prop-
erty follows from the bounded character of 4, ;,{2),
and since P(2) are computed without involving any
spectral factorization, the nonminimum phase cha-
racteristics of H(2} if any is also preserved here.
Finally. to show the uniqueness of the ARMAIp, q}
from in (41), it can be shown that no further degree
reduction is possible since common factor cancel-
lation in #{s numerator and denominator does not
occur [17].

Equations (43)-(53} can be implemented provided
p and q are known. Usually the model order {p. q) is
unknown, and that will have to be evaluated from
the given data. As we show below, the invariant
characteristics of the rational bounded function d, .,
(2) in (42), together with the Schur update rule in
(25) can be used to determine the model order.

4.1 Modse! Order Selection

Having determined d, 444 (2)= f(2)/g(2) as in (45)
{48), the bounded function d,,44(2) at the next
stage (n=p+qg+ 1) can be evaluated in a similar
manner (rom the Schur polynomials 4, 4,4+ ,(2) and.
by 4 441(2). In fact, letting

(2 Z qz"

clz -

dyrgrald) = =52 —— (54)
Z e‘.Zk
km0

from (44), we also have

HEZ =T sgsr - bpior (D &2 +2a pyge,(2) cl2) (55)

p+q+1(2) €l2) + 2 S-MH (2) ¢l2)

and as before e2) and c(2) can be evalmated by
equating the coefficients of 22t !, 29 2... z3#+¢+] jn
the denominator and z7%', z¢*2... 2? in the numer-
ator to zero?. Once again, these equations possess a
unique solution at the correct stage for the unknowns

€, k=1-p, ¢ k=0—p—1, (with ¢o=1), and they
result in a bounded function in (44). Notice that
both these bounded functions dp4,+4{2) and d,. 440
(2) are of degree p, have the same form as in (43),
and are related through the Schur rule as in (25).
4y +4+2(2) makes use of additional information 4p 4, +,
about the system, through the new Schur polynomials.
Substituting these two bounded functions into {25)
and simplifying, we obtain
SE | Soel) + 2c(2)

g2  ela)+z2fcl2) (56}

Equation (46) relates the coefficients of the bounded
functions at two consecutive stages, and equating
the ratios of like powers on both sides of {46) and
rearranging, we obtain the conditions

edp. =0 k=0—p-1.

where

€olp. @)= Foe€p +Cp) (57)
and

cpp=LeBtom _So gy (58)

et fote-y &

These conditions are a direct consequence of (42).
and reflect the ARMA(p. q) nature of the problem.
Since the first stage where (47) and (48) are satis-
fied occurs at the correct stage, by updating p and g
sequentially starting with 22> 1 and ¢ < p, the true
model order can be found as the smallest integers p
and q that satisfy &, ¢) =0, or, more genreally

£olp. @) = \/:go Tesd, @)1 =0. (59)

The key feature of a rational system - its degree - Is

exploited here in determining the true model order
and system parameters.

4.2 Numerical Results

The nonminimum phase stable rational transfer
function examples {n Figs. 1-3 highlight all import-
ant aspects of the algorithin described earlier. In the
first step, if Hle/™) is known, 4, £=0-+r. can be

9 Although this resuits In (2p + 1) equations in 2p unknowns, since the coeflicient of 22212+ |g th&same as (77), the re-

maining 2p equations are implemented in our conputations.
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computed using the formula (Figs. 1 and 3)

hk——l— j " Hie?) g% d9, 60)
2n ).

and, if it 1s unknown, they can be estimated from

the Input-output data samples as (Fig. 2)

N-k

LN st + ket oy, 61)
N

wher x{#n) represents the output of the unknown sys:
tem H(z) that has been excited by a stationary
zero-mean white noise process win}. The unknown
system is assumed to be ARMA(z, ») with n 2 m
and initializaiion begins with 7= 1, »= 0. Preparation
of the given impulse response sequence /1, k=0—n
+m+ 1. is first carried out to generate oy = Ay/x,, ¢ py+ ).
k=0—>n+m+ 1 as in {38}{39). Computation of the
Schur polynomials @, i+ .(2). 8, ¢+ 1(2} using (29).
(30) and (37). followed by those of the bounded
functions d, | m+ {2} = f(2)/8(2) and d, 4 m+212) = cl2)/
2(2) then allow g4z, 7) and &(n. #) to be evaluated

04
-10 -
|H{e)]
dB
—90 A
-30 T T T
0 /4 x/2 3r/4

(a) Original/reconst. magnitude.

T
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using (57). (59), provided both d,, | & and d,, +,r\ »
12) exist as bounded functions. The heavy dots on all
curves in Figs. 1{c)-3(c) indicate the presence of
such a stage (. m). and if such is not the case that
particular stage is skipped and the indices # and m
are updated. Notice that &z, #) and eln, » are
guaranieed 1o exisl at the correct stage »=p and m
— g, and since the first place where g4(n, ) and &ln,
m} equal zero also occurs at the correct stage.
sequential updating of # and » continues until sub-
stantial relative minima in the values of gy{z. ) and
eln, m) are observed to occur for the first time. The
corresponding pair (5. ) is then identified as the
model order (p, 4) and the system parameters are
computed from (51)(53). Finally. to facilitate com
| Hie" |
recenstructed counterpart {dotted) are plotted in

parison. the exact magnitude and its

Figs. 1(a)-3(a). Similarly. the exact phase ¢(f) and
the reconstructed phase (dotted} are ploited in Figs.
1{b)-3(b). Fig. 2 shows the reconstruction of an

ARMA(S, 4) system from its input-outpul data

0 Y T T
0 r/4 w/2 3In/4 s

(b) Original/reconst. phase.

dB ‘ll-»
—200
I — eln,m)
]
~300 e 2 m)
10 76 98 125 1411 1701 1818 20,20

(c) Test criteria for model order selection

Fig ). Reconstruction of a nonminimum phase ARMA{7. 8) model from its

partial impulse respanse sequence. The original model corresponds to

The reconstructed model is given by

— +4, 1602~

Hiz)=

3y . EL

H(z) = ——0.602=2. 2062 +4,1602 ~4,9622"+4, 66! ~3. T2k2" 0.8682"
1.0—3.5112+6.438z° —8.0522°+7.8752*—6.0182°+3.1862°—0.8882"

+
1.0 —3.5112+6.4382° —8.0522°+7.8752* —6.0182" + 3.1862°—0.888z" °

4 25+ zs
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0 . 0
|H (e [H ()]
dB dB
-20 T T T —-20 T T T
0 =#/4 w/2 3n/4 « 0 =n/4 =/2 3x/4 =«
(a) Original/reconst. magnitude. (d) Original/estimated magnitude.
360 360
270 270 A
$(0) 180 $(8) 180
90 90
-1 T T T 0 T

T T
0 w/4 w/2 37/4 « 0 =/4 n/2 3r/4 =

(b) Original/reconst. phase. (e) Original/estimated phase.

0 == ” P 7
} 4 '
100 \1‘— ,.’/ —20 - NN
dB ! dB 40 l
—9200 : ii‘(,gn,n;n) - : ——¢€o(n, m)
300 I (n, (n,m) —60 + {(n,m)

T T
1,0 4,2 54 74 88 1,0 4,2 54 74 88

{¢) Test criteria-exact case (f} Test criteria—data case

Fig 2. Reconstructien/estimation of a nonminimum phase ARMA(5, 4) system,
The original model corresponds to

H(z)= ,..&osﬁ.rm%%gdmiﬂm?
1+0.04582 +0.23032°+0.5 +0.37412'+0.09072° *

The reconstructed model tn {a)-(¢) s given by

- + - 3 4
HAz)= m&am%@w
140.04582 +0. 23032°+0.52202°+0.37412* +0.0907

The estimated model in (d)<0) is glven by

R(Z) = — z+ 2 - 23+ A
! +0,02082+O.mz£+0,5284;§+0.37242‘+0.077925 ’

The coeflficients of H(z} are estlmated from 12 realizations each consisting

53

of 600 data samples.

samples with i;;, estimated using (61). Aithough the
theoretical development in section Il assumes p = 4.
as the MA{5) example in Fig. 3 shows, every case
where ¢{ f can be detected as an ARMAIq, q) system.
This means of course that some of the reconstructed
coeflicients in the denominator are filled in auto-
matically as zeros, to raise the denominator degree
to q.

V. Stable Rational Approximation of
Nonrational Systems

A nonrational system has a transfer function that.
unlike the rational systems, cannot be expressed as

the ratio of two polynomials of fintte degree. If such

a system is stable, then it admits a power series
expansion in |z| {1, and the problem is to represent
this by a rational system in some optimal manner.
As remarked in the introduction. although Pade
approximatlons can achieve this goal, such appro-
ximations need not guarantee stability. Moverover,
the Hankel matrices generated from the impulse
response data has no particutar rank invariant
structure in this case. In this context. once again we
can make use of (40) to obtain all stable rational
solutions to this problem.

To start with notice that the Schur extraction
principle in (24){25) is perfectly general and hence
if H(z) is nonrational, then the representation in
{40) 1s still vatid, where &, , {2} in that case represents



54 The Journal of the Acoustical Society of Korea, Vol. 15. No. 1E (1996)

0
{H ()|
JdB
~10 -
-15 T T T
0 /4 =2 3n/4 .

(a) Original/reconst. magnitude.

o
27 /3
¢(6) ™ A
/2 -

0

T T T
0 n/4 «wf2 3nf4 s

{b) Original/reconst. phase.

0
—50
—100
—150
—200

error

dB

1,0 30 4,1

1 T 1 T
55 65 75 85

(n,m)
T T
9,5 10,2 10,10

{¢) Test criteria for model order selection

Fig 3. Reconstruction of an MA(5} model from its partial impulse response
sequence. The original model corresponds to

H(z)=0.8704 —2.47142 +3.57822% —3.65602°+2.0357* — 1..0z°.

The reconstructed model is given by

HAD = 1551510 Mz -1.6x10 -

a nonrational bounded function. Interestingly, as
remarked there, if 4, ,(2) is replaced by any rational
bounded function, we obtain a siable rationa transfer
function H,(2) that interpolates the given impulse
response sequence {/},.,. This key observation
can be used to determine interpolating rational
systems with minimum degree.

Since Pade approximations presevve the optimal
degree character, if such approximatjons are also
stable, then they must follow from (40) for a specific
rational bounded function 4,+,(z). To determine
such bounded functions, let d,,,(2) = f{2)/giz) rep-
regent a degree m bounded function that when sub-
stituted into (40) generates an ARMA(p. q) Pade-ap-
proximation H,(z). Thus

Q)

L . Dad gt +2 4,0 f12)
Pz 7"

a2) g(2) + 2z by(2) f(2)
=Y hezt + 00"t
=0

H,(2) =

62)

For (62) to represent the Pade approximation. we
must have #+¢ < », and once again to respect the

ARMAI(p, q} nature of H,(2). the polynomial f(2) must
be of degree m~ 1 and hence £(z) must be of degree
m. Thus the formal degrees of Pz} and Q(2) in {62)
are n+m provided d(a,(z))=xn and hence the
coefficients of 2°*'.--.2"*™ in the denominator, and
the coefficlents of 29%'---2"*™ {n the numerator
in Appendix-B, the

coeflicients of 2% - 2*%" {n the numerator and

must be zeros. As shown

denominator generate the same equations and
hence this gives n+{m—p) + (m—-@)=2m—(p+q)
equations In 2» unknowns. Since zn = p +q. there
are at least 2m equations and they can be used to
solve for the unknowns. From the above degree
argument m—p > 0 and m—q = 0, or m= maxip, ¢,
and hence for a given p, glwith p = g), the least com-
plex bounded function 4,4 ,(2) is also of degree p. In
that case, the destred bounded function &, +,{z) has
exactly the same form as tn {43), and the system of
equations so obtained has the functional represen-
tation in (45)-(48).
case, the system of equations so obtained need not

However, unlike the rational

yield a solution for g(z) and f1{z). and even If a sol-
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ution exists there, g(z) so obtained need not be
strict Hurwitz, and further f(z)/g(z) need not turn
out to be a bounded function. However, for some p, ¢
if f(2)/glz) turns out to be a bounded function, then
H,2) in {62) represents a stable ARMA(p.q} Pade
approximation to the given nonrational function.
Thus every stable Pade approximation to the given
data has the representation

o= 2@ —y by o(2) 812) + 2 @y gl2) f12)
r q s
P2} Gy+l2) g2h+ 2,4 (2) f12)
=Y B2t +0(z" ). {63)
k=0

where n > p+gq, and f(2)/g(2) represents a bounded
function glven by (45)(48). We summarize the
above observations as follows:

The necessary and sufficient condition for the
existence of a stable ARMAlp, q) Pade approxi-
mation to the fmpulse response sequence { /)55 ts

55

that the system of linear equatlons in {45)-(48)
generated from the associated Schur polynomial
coefficlents yleld a bounded solution of degree ¢ for
S(2)/g(2) in {43). In that case, (51)-(53) and (63) rep-
resent the d esired stable transfer function.
Interestingly. the above remarks raise the following
question:Given an H{z} that represents a stable
{nonrational) system transfer function, does there
always axist a stable ARMA(p, q) Pade approxi-
mation for some p and q? Clearly, if such a solution
exists, then that must follow from (63) with n > p 4+
g for a rational bounded function f(2)/g(z} of degree
p. that is obtained by solving the system of
equations in (45)-(53). Note that due to the presence
of the z factor in {63}, 5(f{2)) < p—1, 8{g(2)})=p are
necessary conditions, provided 3(a,{2)) =». Thus

f@=fo+ fiz+ -+ fp_ 207!

0 - 2r
. -5 4 27r/3
[ (=)
dB —10 é(8) 7
—15 /2
—20 T T T™ 0 T T
0 /4 x/2 34 o« 0 t/4 x/2 3x/4 =«
(a) Original/approx. maguitude. (b) Original/approx. phase.
L NS, 1 v ~
LR A Vi L S DT IRy
)
—50 !
error i
~100 - ,
—~ Pads !
- r](n,m !
-150 T T ) 1+ T T T (n,m)
1,0 6,2 8,6 11,11 14,14 17,1 18,18 20,20

(c) Test criteria for model order selection

Fig 4 Rational approxtmation of a nonrational system. The original nonrational

transfer function is given by

Hz)=H(2)e *+H2e "V

where

+z =
H(2) _L?’l.oz-l.?sn . Hy(2)

1 - 2

1.09-0.91z+1.

+2
+1.082"-0.862'+2 °

The stable Pad\'e approximation ARMA(11,51) model is given by H,{2)= B, (2)/A.(2),

where

AJfD =1~2,110242.3512* ~0.2652°~1,8692' +2.4592°— 1.078+*
= +(),1192' +0.2282°+0.05572°+0.00592 *+0.,00026z *,

B.(2)

= 3.571 —9.6092 + 15,7202 — 12.9742° +7. 402* ~2. 2437+ 1.2272*

= —0.5552" +0. 1262"—0.01882°+0. 00162 **—0.000062 .
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and

ga)=got gzt - g,

subject to the constraints g, # Oand 2 > p +¢.

In fact, given A, 2=0—#n. there might exist no
stable Pade approximation, and. moreover, the lowest
nontrivial stable rational approximation that matches
the given data might be of ARMA(n, n) form which
corresponds to d, 4+, = 0O in (40). However, so long as
f(2)/gl2) is chosen to be a rational bounded func-
tion in {62). it represents the class of aill stable
rational transfer functions that interpolate %, fi,.-A,,.
Thus even if stable Pade approximations and absent
in a particular situation, by relaxing the Pade con
straint, other stable rational approximations can be
obtained.

Figs. 4-5 as well as our extensive computations in-
volving nonrational systems containing logarithmic
and essential singularities seem to indicate that
stable Pade approximations always exist. In the

simulations presented here, the original nonrational
function H(z) is used to compute k;, k=0—p +4q.
and it is [irst ‘prepared’ to generate ¢, =0— f + ¢, as
in (38)(39) and thereby the Schur polynomials @, ,
{2) and b,,,(2) are generated recursively. From the
above theorem. since a stable ARMA(p. q) Pad\’e
approximation 1o this data must follow from (63) for
a bounded solution of ftz)}/glz} given by (45)-(48),
those equations are verified for such a solution, and
the indices are updated in a sequential manner. The
heavy dots in Figs 4(c}-5(c) indicate the presence of
such a stage. where (45)-(48) yield a bounded sol-
ution for @, ., ,(2) = f(2)/g(2) thal results in a stable
I’ade approximation.

Further, if the two consecutive rational functions
dyiyi1te) and 4y, .2(2) turn out to be bounded and
are related as in the Schur algorithm, then g2, ), €
(p. @) will be zero indicaling the “near rational”
nature of the data. When H{z} is known in advance,
the percent spectral error

0 2 -
5] o /3 | I—
HE g ] s0) 7 1
—15 ~ /2
-20 T T T 0 Y T
0 /4 w2 3r/4 T 0 LTL U FRRRENT XY ™
{a) Original/approx. magnitude. {b) Original/approx. phase.
0 S<=———=——-—=—"= S s
~40 :
e‘rjré)r 804 :
~120 { —— Padé |
—160 - —l T](Tl‘,m) T T ; T T (12.m)
1,0 6,2 86 109 12,11 15,9 17,1 18,18 20,20

(¢) Test criteria for model order selection

Fig 5. Rational approxmation of a nonrational system with a logarithmic
singularily at z = 1. The original nonrational transfer function is given by

0.797 = 1.0362 +0.8292*

H(z)=

1—1.470z+0.9462° +0.8412°~1.2772*+0.8292

g In(l —2)

The stable Pade ARMA(15, 9) model is given by H, (2) = B,{2)/A,l2), where

ALz =1-4.9792410.7322° —11.9282°+4.4282" +6.3482°—11,0902°
+7.8862"—2.5972" —0.0222°+0.2932 '°—0.0752 " +0.00382
+0.00032 *+0.000003z ¥ =7.0x10 'z,

B.(2) =—0.0083~0.7592+3,3722% —6.4562"+6.8282*—3.9582°+0.8987°
+0.2112"—0.1472* +0.0202°.
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11Hte) 2= 1HAe ™21
| Hie’"}|?

ntp, ¢l=supy ~ (64}
also may be used for model order selection. Notice
that Fig. 5 represents a transcendental nonminimum
phase system {(zero at the origin) with a logarithmic
singularity at z= 1. Nevertheless. as seen from Figs.
S{a){c), the ARMA(15, 9) Pade approximation is
stable and preserves the nonminimum phase
charactier of the original system. The abundance of
stable Pade approximations are evident in Figs 4(c)
.5{c}. Nevertheless a rigorous proof is still lacking in
the general case regarding the bounded character of
fl2)/gla) for some p. ¢. and the issue remains

unresolved.

V. Conclusions

This paper investigates the problem of obtaining
all stable rational solutions that interpolate the
given partial impulse response sequence by making
use of the well known theory of bounded (Schur)
functions. In this context, a new test criterion is
developed to determine the model order of rational
systems, and thereby determine their system
parameters from the given impuise response sequence.
The theory developed is further utilized to obtain
the necessary and sufficient conditions for stable
Pade approximations of nonrational systems. A
practical atgorithm is developed that translates the
stability condition into the bounded character of a
rational function generated from a set of linear
equations obtained from the Schur pelynomial
coefficients assoclated with the given impulse
response sequence. Interestingly. since the present
technique does not make use of any factorization
procedure, the nonminimum phase characteristics

of the original system are preserved here.
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