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Systems from Partial Impulse Response Sequences
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Abstract

This paper addresses the problem of identifying the class of all stable system transfer functions that 
interpolate the given partial impulse response sequence. In this context, classical Pade approximations 
that are also stable, are shown to be a special case of this general formulation. The theory developed in 
this connection is utilized to obtain a new criterion for determining the model order and system 
parameters for rational systems, and, further, to generate nonminimum phase optimal stable rational 
approximations of nonrational systems from its impulse response sequence.

I. Introduction

This paper addresses the problem of identifying 
the class of all stable system transfer functions that 
interpolate the given partial impulse response 
sequence. Although classical Pade approximations 
match the given impulse response sequence to a 
maximum extent and are optimal in that sense, the 
systems so obtained need not be stable and hence 
they may not be attractive from physical consi­
derations. In this context, consider the problem of 
identifying a linear discrete time inva텨ant, causal, 
stable system with an unknown transfer function 버 

(z) from partial information regarding itself. Since 
the system is causal, it has a one-sided power series 
expansion given by

H(z) = £ hkzk (1)
々=o

and stability demands that

E 丨如〈GO. (2)
" = ()

It follows from (1), (2) and uniform convergence that 
the transfer function H(z) is analytic In |z I < 1 and 

uniformly continuous11 in |z| M 1 [1, 2]. Clearly, the 
sequence ｛龙异represents the impulse response 
of the system and when the avetllable information is 
of the form h^, k = 0~-^n, the system identification 
problem in the rational case becomes equivalent to 
a Pade approximation problem. In that case, it is 
easy to show that rational ARMA(p, q)-type appro­
ximations that match the given data are unique pro­
vided (Pade approximation) p + w[l, 2]. These 
approximations, however, need not be stable and 
hence from physical considerations they may not be 
acceptable. For example, consider the stable (mini 
mum phase) transfer function H(z) =e~3z. 까te ARMA 
(1, 1) Pade approximation of this function is given 
by B⑵/A(n) = (2 — 3z)/(2+ 3z), and it represents an 
unstable system since _A⑵ has a zero in ⑵〈1.

In the rational case the identification problem is 
equivalent to finding the system model order (p, q) 
and the system parameters. Given the partial im­
pulse response sequence, the system model can be 
established from the invariance of the rank property 
associated with certain Hankel matrices generated 
from this data. Thus, in particular, with hk, R 느。, 

denoting its impulse response sequence as in (1), let

* Department of Information and Telecommunication College of Engineering Soong Sil University
1 Note that the use of the variable z (rather than here translates all stability arguments into the compact region \z\ <.

1. H(z) is said to be minimum phase if it is analytic together with is inverse in |z| M 1. Since stable functions are free of 
poles in in |z| 1, in the rational case they are analytic in 丨z| M 1.
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'hx h2 …hk

財 力3 …hk + \
Hk=: :::

hk hk+i …h2k + \ 

(3)

represent the Hankel matrix of size kxk generated 
from 方i, h2.…Then, for a rational system with 
degree p,

extension problem.

D . The Schur Parametrization

To start with, a function d(z\ is said to be bounded 
(Schur function), if

z) d(z] is analytic in \z\ < 1

rank Hk = rank % = 力, 冷 그 刀

and ⑸
⑷

ii} \d[z} I 1, in |z|〈 1.

and several singular value decomposition technique 
have been proposed for model order selection based 
on the above rank condition [3, 4], Equation (4) 
shows the linear dependence of + hp + 2^" on 
their p previous terms, and it represents the finite 
degree nature of a rational system. Although these 
techniques have the advantage that they can make 
use of all available impulse response data, they 
need not lead to stable systems. Moreover, the above 
rank condition is not valid in the case of systems 
that are not rational, since they do not represent 
finite degree systems. The problem in that case is to 
obtain equivalent finite degree stable rational 
approximations that capture all the key features of 
the original nonrational system in an optimal man­
ner by making use of the given data. Such a rational 
approximation should interpolate the given infor­
mation, and preferably be of minimum possible 
degree.

In this paper, we address this problem and obtain 
closed form solutions for the class of all stable 
transfer functions that interpolate the given partial 
impulse response sequence. Specifically, by making 
contact with the Schur problem [5] in section II, it is 
shown in section III that the theory of bounded 
functions (Schur functions) can be utilized to obtain 
all stable solutions to this problem. In this context, 
a new model order selection procedure is proposed 
here that utilizes the finite degree property of a 
rational system. Rational and stable approximation 
of nonrational systems is described in section IV, by 
making use of ideas developed in 요ection III. 
Although various authors have addressed related 
problems in the past utilizing this approach [6]-[131, 
some Interesting new observations will show that 
rational system identification as well as stable 
rational approximation of nonrational functions can 
be realized from the same formulation of the Schur

Thus zk, 1/(2 +z), ©td all are bounded functions, 

the later representing a nonrational one. Because of 
the analyticity in |z| < 1, every bounded function 
possesses a power series representation of the form

X
d(2)=f dkzk,⑵〈1, (6)

h = Q

that is valid in Ul 1. If d(z) is rational, then Id⑵ | 
Ml in I2I < 1 also implies d(z} is free of poles In |z| 
=1 and hence d{z\ is analytic in |z| 1. As a result
日(2) represents a stable system.

From Schur's Theorem [5], d{z\ given by (6) 
represents a bounded function iff

I 一以 k = (7)

where

dQ 0 0 •• 0
d 1 0 . -0

dQ ■- 0 (8)

dk dk~ 1 dk-i ■ .爲

represents the lower (or upper) triangular Toeplitz 
matrix generated from dt. i = dk. Further, strict 
inequality is maintained in (7) under the additional 
constraint

丄「ln(l-|d(次叫2)如〉-8. (9)
2 71 ,1-71

Given a partial set of coefficients dk, k=O-»n、that 
satisfy I-DnD* 그 0, "the problem of coefficients" is 
to obtain all bounded functions d(z) such that the 
power series expansion of d{z} matches the given 
coefficients, i.e..

n
必力 =£ dkzk-^O(zn + l). (1 이 
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An algorithm introduced by Schur in this context 
answers this problem, and as we show below, it 
forms the basis for our approach to the present 
parametrization problem. As Schur has first observed, 
if d{z\ represents a bounded function, then, so does 
the function [5]

』(幻=丄• J'：*点斜,必。)=勿卜 (ID

This follows by noting that, since Q(이〈 1 and \d{z\ | 
M L in Iz I〈 1, the only possible pole of dx(z} in Iz |〈 

1 is at 2 = 0, and it is cancelled by the zero of

Q(z)—必이 ( )

1 -a*(이』伝)

at 2 = 0. Thus d【⑵ is analytic in I 히〈 1. To prove its 
boundedness in \z\ < 1, we can make use of the 
maximum modulus theorem [14, 15]. At any z = rej0 
in II < 1, let dtrej0) -Re^[0\ tne |R| < 1 and by di­
rect expansion, we get

_ I d"次')-必 0) I 2 3 = (1—|R|2)(1 - |d(이 |2)

2 The degree 出H(z)) of a rational function H(z) equals the totality of its poles (or zeros), with multiplicities counted, includ­
ing those at infinity.

3 Equation (20) represents the 시assical Richards' condition (16) for degree reduction.

1 — I 了二方*(丽r污 I = ——|T二方*(이Re히 2 — 그 °-

(13)

Using this, (11) gives

\dx{rej0} I 0 3〈 1

and as 송 1—0, by maximum modulus theorem, 
since a function that is analytic in any closed region 
attains its absolute value only on the boundary not 
inside that region, we get

\dx{z}\ M 1 in \z\ < 1. (15)

i.e., di(z) given by (11) represents a bounded func­
tion provided d(z) is bounded. The above argument 
also shows the boundary value dte}(>} defined by the 
internal radial limit lim d(rej0) is bounded by unity

r-> r
fbr almost all 0.

In the rational case, since 2 = 0 is not a pole of dx 
(z), from (11) we obtain that the degree21 of the new 
bounded function d^z] never exceeds that of d(z), Le.,

⑵)M北/⑵)， (16)

with inequality Iff the 1/z factor in (11) canc^s a 
pole of (12) [161. Since this cancellation can occur 
only at 2 - co, from (11)-( 12), degree reduction happens 

iff the denominator term 1 —d(0)* d(z) satisfies

1 -2*(0 以⑵ = = Q, 

or

<5((/iU))〈况Q(z)) UHd⑵d*⑵\2=0= 1, (17)

wdiere

tZ*U) = tZ*(l/2*) (18)

is defined to be the paraconjugate form of d(z]. 
Cleary, the paraconjugate form represents the ordi­
nary complex conjugate operation on the unit circle. 
In particular, if

"、 bo + biZ H— + bpzp a[z}=-------------------------—
“o + -\— +apzp (19)

represents a degree p ra너onal function, then31

bob*
<50](z)) 그 /⑵Q*⑵」0 = —一二厂 = 1. (2이

必

Note that if力，d{z\ does not satisfy (20), 
then, and rewriting (11), we get

, 衫（0）+物1⑵
3二］+汕（0商苻， (21)

and because of the z-factor that multiplies dx(z} in 
(21), it follows that to respect the degree of d{z\, the 
numerator polynomial of djz) must be at most of 
degree p-1. As a result, its denominator must have 
degree p and hence, whenever there is no degree 
reduction we obtain the representation

』1（N）= 兀)+儿Z +…+ /力一 "I 

go+glZ+g2z2 +…+gpZp (22)

The bilinear transformation in (11) maps the inside 
of the unit c辻cle onto itself Thus, in general, with dk(z} 
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representing an arbitrary bounded function and 
with

Sk = d"0), (23)

(11) translates into

ak + ilz)-~- - -；----- * 八、，
z 1 ~skdk(z) (24)

or.

,,、 Sk ](z)
d 认 z) = 土 J®,；心。，1 +zs0+](z) (25)

whith the understanding that d0(z]三 d{z}. The above 
Schur algorithm in (25) can be「ecursiv미y updated 
and after n such steps, we get 

d(z) =

⑵ 私—1 ⑵)+z(z 私—i(z) -\-s*bn顼z))爲 + i(z) 

0” —1 ⑵ +zsn 久—i(z)) +z{z 久_1⑵ + 写0龙—1(刼)爲 + i(z)

_ + 1(2) (26)

an(z) +，"”(幻』게+ 1⑵

Where 务Jz) and bn(z) are in general two polynomials 
of degree n, and

元⑵=znan. (z) = zna*(\/z*], (27)

b n(z) = zn bn.(2} = zK 6*( 1 /z*) (28)

represent polynomials reciprocal to an(z} and bn(z] 
respectively that satisfy the recursion

an(z) = an-x(z) +z& bn-i[z], n 느 1 (29)

and

如(z) =久_](z) -\-zsn an-x{z\, 1. (30)

㈤(z) and bn(z] are defined to be the Schur polyno­
mials of the first and second kind respectively. No­
tice that, if d{z) is rational to start with, application 
of the above procedure will result in a rational 
bounded function dn + Jz) for every n, and, further 
from (16), in that case

汎A+Jn)) m S(d(z)), m 0. (31)

From (26), the iterations in (29) (30) start with

“。(기 = 1, = s0 = (32)

Using (29) (30), it is easy to show that a„(z),乃=1 — x, 
represent strict Hurwitz polynomials41. To see this, a 
direct calcuation gives 

an(z)an.(z) ~bn(z}bnAz) = (1 i & | 勺(山_ 】⑵

dr⑵一久_]⑵&_].(幻)〉0, (33)

which gives

( 1 - 012)
01空丿 |2= 1 - —-5  ..........M 1,处 2 0, (34)

and using this in (29), we obtain

n n
O<n(l-Isj)^ \an(z)\ ^FI(1 + 0|),⑵ Ml. (35)

1

that shows the strict Hurwitz character of an{z). 
Returning back to (26), d(z) represents a bounded 
function for every choice of the arbitrary bounded 
function dn+ Jz) there, and in partici괴ar also (or dn+l 
⑵三 0. Thus b„(z)/an(z) itself is bounded and, more­
over, from (34), (26), a direct expansion gives

>f ■.如(z) d(z)------
an{z]

矽 1 '底+ i⑵ fid- \sk\2)
_____ _______空o

a„(z)(an(z) z bn(z)dn+l(z))
= O(zn + l)

i.e., the power series expansions of the bounded 
hinction동 d(z] and bn(z]/a^ agree upto the first n + 1 
terms. However, d(z} in (26) contains an arbitrary 
bounded function dn A x{z}, and hence the above 
terms must be independent of dn+ }(z), and they 
must depend only on anU) and 如⑵.Thus, for every 
arbitrary bounded function of dn + 】(z), we must have 
the interpolation property

Q⑵二一 쓰一一一二JZN土丄丄스 =Vdkzk +O(zn+ l), (36) 
⑵ + z bn{z)dn + i(z)卜。

and the dk's, k = dn、can be determined from the 
Schur polynomials ak(z), bk(z} in (26)432).

Conversely, (36) is completely specified by the 
first (n + 1) coefficients {dk}^=0, or from the Schur 
polynomials a„(z) and Z>„(z). To complete the recurions 
in (29)(32), only the coefficients sk,左=0 —盈，are 
required and they can be obtained recursively from 
the given data d々 느 0—，徂1‘기

4 A Hurwitz polynomial is free of zeros in Iz I < 1, and a strict Hurwitz polynomial is free of zeros in ⑵ M 1.
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苫이”-%I "心气財4“

—------------------------—-------------------------------------

1一£ 理一仃 dk 1- 1 如—1 ⑵ £ dkzk I
为=0 I 41 j w-l

也느 1. (37)

udiere { }„ represents the coefficient of 2H in { }. Using 
this, a^z\ and 九⑵ can be computed recursively, 
and the class of all bounded functions that 
interpolate the given coefficients dk, k~0—^n, is 
given by d(z} in (36)51.

3. Parametrization of Sta비e Systems
In general, the given impulse response data h足 k = 

0-* w, do not form part of a bounded function, and 
to make use of the above formulation in section II, it 
is necessary to 'prepare' this data so that it 
confirms with a bounded function. To attain this 
goal, consider the matrix

知 0 ■■- 0
rr — h] hc\ ••• 0Hn~ . . : , (38)

.hn~i …h°.

and let 人represent the largest eigenvalue of Hn 
H*. Then, clearly, the sequence

dh = 브、k = 0^n, (39)
^■n

satisfies (7) with inequality, and hence qualifies as 
the first n + 1 coefficients of a bounded function이 

Recursive determination of the coefficients sk, k-0 
-^n from (A・7)-(A，8), together with ak(2}, R = dn 
using (29) (30), gives

b„(z} + 2兀⑵砍+ I⑵ H ,, 丄， 
為 • 二—' 二 ■■크十 I— =£ hkzk-^O(2n+l)

㈤⑵+ nZ&⑵4 + 1⑵ A = o (40) 

to be the class of all transfer functions that are ana­
lytic in 〈 1, free of poles in |z| M 1 and interp­
olate the given partial impulse response sequence* hkt

= 0->w. Equation (40) can be given two interesting 
interpretations: First, if a system transfer function 
H(z) is rational to start with, then its representation 
as in (40) after n steps of the Schur algorithm will 

imply that dn + x(2) must be a rational function. 
Similiarly if H(z) is nonrational to start with, then 
dn + !(z) must be nonrational in (40).

Hie alternate interpretation shows that given hQ, 
知,…似，equation (40) represents all stable system 
transfer functions both rational and nonrational 
that interpolate the given data, and they can be 
obtained by varying dn + i(z) over all bounded 
functions. Thus even if the given data corresponds 
to a nonrational system, the freedom present in the 
choice of dn* Jz) in (40) can be utilized for rational 
approximation of H(끼 by appropriate choice of 
rational bounded functions dn + i(z).

The above discussion shows that dn + Jz) can be 
utilized for rational system identification as well as 
rational approximation of nonrational systems. In 
particular, if dn +} (z) is chosen to be a rational 
bounded function, then since dn + i (z) and are 
free of poles in [z\ 1, 以⑵ in (4이 represents a
stable regular rational transfer function (analytic in 
\z\ M 1) that matches 나le given coefficients71. As a 
result, the class of all stable rationsd functions that 
interpolate the given impulse response sequence is 
obtained from (40) by varying 4 + i⑵ over all 
rational bounded functions.

IV. The Rational Case

If in (26) is rational to start with, as remarked 
earlier repeated application of the Schur procedure 
will result in rational bounded functions dn+i(z] 
that satisfy the degree constraint in (31). As a

5 If we let dn+ = AU), a regular (analytic in 丨e| M 1) all-pass function in (37), then d{z) generates every all-pass function 
that satisfies the above interpolation property. In general, if A⑵ is a regular rational all-pass function, the denominator 
in (37) is only Hurwitz, and, hence, it can possess zeros on the unit circle. However, the reciprocal nature of the 
pole/zero pairs in an allpass function makes dtz} in its irreducible form a regular rational all-pass function. Notice that 
the minimum degree of such a reg니ar rational all-pass function is n + 1 and it corresponds to + i (z) = + 1. Since only 
(n + 1} coefficients are matched by any such all-pass function, it follows that no stable all-pass approximations are poss­
ible in the z너omain in the Pade sense.

6 If =人i(〃) in (49), then the singularity of in (42) forces a unique all pass solution with degree equal to the rank of J„.
7 dn + i(z) nonrational implies H(z) is also nonrational. In that case, althougn is analytic H(z) in 121 < 1, as an example due 

to Fejer shows, a priori, H(z) need not represent a stable system [14, 19).
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result, from (36) and (40), it follows that every 
stable rational function H(z) can be represented as 
in (40) where 么+Jz) is a unique rational bounded 
function that satisfies

况么+i(z)) Md(H⑵)， (41)

and degree reduction in (41) happens according to 
(19) (20). Thus if H⑵ represents a stable ARMAS Q) 
system with p)q in (4이, then = p and since 
0成>)=。，it follows from (20), (31) that

(42)

and further using the degree arguments as in (21)- 
(22), we obtain81

a„+i(2)= ~T =二二--- T-------- ;一—七----g(z) 1 +g】z+g2z +…^gpzp
(43)

(Since glz) is strict Hurwitz, go 尹。and it is 
normalized here to unity.) Substituting (43) into 
(40) we get

H(z) = Z„ • = vhkZk + o(z«z).
an(z)g(z) + zf{z} Z시z) * = 0 (44)

Since every rational system after repeated appli 
cation of the Schur procedure has the above rep­
resentation for any n, where f(z)/g(기 is a unique 
rational bounded function as in (43), we can make 
use of the degree constraint of H(z) in (44) to obtain 
this unknown bounded function. Towards this, 
notice that the formal degree of both the numerator 
and denominator of (44) is n + p, and to respect the 
ARMA(p, q) nature of H(z), we first equate the 
denominator coefficients of zp+x,，가，+ %..*邪 to 
zero. However, as shown in [171, equating the 
coefficients of zp+ l, zp + 2,---,zp^n in the denominator 
to zero implies that the respective coefficients in the 
numerator are also zeros. As a result, we obtain n 
equations from the denominator coefficients of z"*', 

+ 2 " and p-q equations from the remaining
numerator coefficients of …，泌.Thus we have n 
+ p q equations and 2p unknowns g% = 1 t and f k 
= 力一 1. Clea미y the minimum value of n is given 
by n = p + q and in that case the resulting 2p

equations in 2p unknowns can be represented in
matrix form as

Ax= b (45)

where
A =

이，+ <7 0 … 0 bo 0 - 0
ap + <7 -1 ap十q … 0 方：扁... 0

a(i +1 %十2 …Qe 如一\ ^*-2… 広

… ap b p + q —\ bp十 q — 2 Kq >(46)
棚 缶 …如-1 * *

ap + q ap + <]- 1
*

Qq + 1
0 如 …"q 0 * 

“q + 2

0 0 …bq+l 0 0 *
一 1

0 0 … bq 0 0 応

x = \gp gp-\ "§2 g\ fp -1 fp-2 "• fl /ol (47)

and

力느 [0 0 …0 + q . ■ ♦ 아， + 1 bp bp — J …bq 4- 1 ] (48)

Here ak, bk, k = 0 — p + q represent the coefficients of 
the p + q degree Schur polynomials ap + q(z} and bp + (J 

(2)respectively, i.e.,

% + + 知 z T- … + 아 + q次*L (49)

and

如+ 形) = 方0 + 缶 Z + 力心 + … + 爲,氣*서飞 (50)

Note that p + q represents the minimum value for 
the available data points n, and if a larger number 
of such data is available, then these equations can 
be modified to accomodate that situation leading to 
an overdetermined system of equations in (45). At 
the correct stage, (45) is guaranteed to have a 
unique solution that results in a bounded function 
for /(z)/g(w), and the unknown system parameters 
of HU) can be expressed in terms of the gjs and f k 
s so obtained. In fact, from (44), with

9U)_Qo + Qk +…+Qg
2 - P(z} +

P + q
=£/小廿+ + (51)

k=o

8 The coefficients of f{z} and g(z) in (53) are generic, and they 러ffer from that in (22).
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we get

k
R产力:it，如=0—2 (52)

:=0 i=0

and

k k~~ I
Qk = ^p + g ( ZZ 缶务t + E ^n-ifk-\-i\f k — 0~>Q. (53)

Clearly, stability of H(z) and the interpolation prop­
erty follows from the bounded character of + 
and since PCs) are computed without involving any 
spectral factorization, the nonmlnimum phase cha­
racteristics of H(z) if any is also preserved here. 
Finally, to show the uniqueness of 난】e ARMA(p, q) 
from in (41), it can be shown that no further degree 
reduction is possible since common factor cancel­
lation in its numerator and denominator does not 
occur [17].

Equations (43)-(531 can be implemented provided 
p and q are known. Usually the model order (p, q) is 
unknown, and that will have to be evaluated from 
the given data. As we show below, the invariant 
characteristics of the rational bounded function dn + 1 
⑵ in (42)t together with the Schur update rule in 
(25) can be used to determine the model order.

4.1 Model Order Selection
Having determined d*+g 十 i⑵ 규/(z)/g⑵ as in (45) 

448), the bounded function 勿* + " at the next 
stage (n = p+q+ 1) can be evaluated In a similar 
manner from the Schur polynomials ^+fl+1U) and. 
bp+l] + i(z). In fact, letting

/>-i
E 아 N*

c(z) *=o "E
弗+q + 2(Z)- =飞M (54)

L ekzk 
D

from (44), we also have

H(z)=Xp+q+i------------------------------ ------------------ (55)
ap+(l + i(z) e(z) + zb p+(?+1U) c(z)

and as before e(z) and c(z} can be evaluated by 
equating the coefficients of zp+1, # + 2 …工호*in 
the denominator and zQ+ \ z<t + 2t"-rzp in the numer­
ator to zero하), Once again, these equations possess a 
unique solution at the correct stage for the unknowns

稣 ck, 杰듀0—力一 1, (with eQ-\}, and they
result in a bounded function in (44). Notice that 
both these bounded functions dp+q + x{z} and
(2) are of degree p, have the same form as in (43), 
and are related through the Schur rule as in (25). 
d*+q+2(z) makes use of additional information hp^q+x 
about the system, through the new Schur polynomials. 
Substituting these two bounded functions into (25) 
and simplifying, we obtain

/(2) fo^z) +zc{z} ，—、
TuT =爾 +3*(z「 (56)

Equation (46) relates the coefficients of the bounded 
functions at two consecutive stages, and equating 
the ratios of like powers on both sides of (46) and 
rearranging, we obtain the conditions

E*(A q) 그。, =

where

£o(A g)= /i)q> + d-i (57)

and

하(力, = *아~】----— , 瓦 = (58)
하g + JQ 아 -1 8k

These conditions are a direct consequence of (42), 
and reflect the ARMAtp, q) nature of the problem. 
Since the first stage where (47) and (48) are satis­
fied occurs at the correct stage, by updating p and q 
sequentially starting wfith 力 그 1 and q M p, the true 
model order can be found as the smallest integers p 
and q that satisfy &)(力’ q) = 0, or, more genre silly

£o(/>, ^) = V E I £*(/>, g) 12 = 0. (59)* k=o

The key feature of a rational system - its degree - is 

exploited here in determining the true model order 
and system parameters.

4.2 Numerical Results
The nonmlnimum phase stable rational transfer 

function examples in Figs. 1-3 highlight all import 
ant aspects of the algorithm described earlier. In the 
first step, if is known,知，k-G~^r, can be

9 Although this results In (2p + 1) equations in 2p unknowns, since the coefficient of 1 is thd^ame as (77), the re­
maining 2p equations are im미emented in our computations.
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computed using the formula (Figs. 1 and 3)

H(次1) e~>M de, (60)
2丸 j-n

and, if it is unknown, they can be estimated from 
the input-output data samples as (Fig. 2)

a ] N~k
瓜=一了 V x(n + (61)

N n= 1

材r(w) represents the output of the unknown sys­
tem H(z) that has been excited by a stationary 
zero-mean white noise process The unknown 
system is assumed to be ARM A(死, m) with 丸 그% 

and initialization begins with n=l, m-0. Preparation 
of the given impulse response sequence hk, 为 그 O — zz 
+ 1, is first carried out to generate dk-hk/xn + m+ b
k-Q~^n + 次+ 1 as in (38) (39). Computation of the 
Schur polynomials an + m+l(z), bn + m+ t(2)using (29)- 
(3이 and (37), followed by those of the bounded 
functions dn + m+1(z)=f(z)/g(z) and dn + m+2(z)=c(z]/ 
e(z) then allow e0(^, w) and e(w, m) to be evaluated 

using (57), (59), provided both dn + m+i(z) and dn + m + 2 
(2)exist as bounded functions. The heavy dots on all 
curves in Figs. l(c)-3(c) indicate the presence of 
such a stage (w, m), and if such is not the case that 
particular stage is skipped and the indices n and m 
are updated. Notice that £0(w. m) and £(w, m) are 
guaranteed to exist at the correct stage n~p and m 
=q, and since the first place where m) and e(w, 
m) equal zero also occurs at the correct stage, 
sequential updating of n and m continues until sub­
stantial relative minima in the values of 沥 and 
e(w, m) are observed to occur for the first time. The 
corresponding pair (n,所)is then identified as the 
model order (p, q) and the system parameters are 
computed from (51) (53). Finally, to facilitate com­
parison, the exact magnitude I I and its 
reconstructed counterpart (dotted) are plotted in 
Figs. l(a)-3(a). Similarly, 나ic exact phase。用) and 
the reconstructed phase (dotted) are plotted in Figs. 
l(b)-3(b). Fig. 2 shows 나ic reconstruction of an 
ARMA(5, 4) system from its input-output data

Fig 1. Reconstruction of a nonminimum phase ARMA(7, 6) model from its 
partial impulse response sequence. The original model corresponds to 

0,602以2知+* 160寸긔,952扌+4所一4.72广嘻8迓— 

1.0-3.51U+6.438?-8.052?+7.875/-6.018?+3.186?-0.888/ '

The reconstructed mod이 is given by

0.602-2.206£+4.16暗-4 952扌+4,366/52 721/+0*88眼_
1.0—3.51“+6.43&2—8.052事+7.875/-6.018事+3.186/—0.888/
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(f) Test criteria-data case(c) Test criteria-exact case

Fig 2. Reconstruction/estlmation of a nonminimum phase ARMA(5, 4) system.
The original model corresponds to

心= 坤9 一0 J购坪20" 或.17寥±0,■职履rr
2 _ 1+0.0458^+0.2303?+0.5220?+0.3741/+0.0907?-
The reconstructed model in (a)-(c) is given by

H(,} = 0,0569T)」365z+p,203财-P」724£±0』9Q*_m
A ;_ l+0.0458z+0.23釦3/+0.522暗+0.3741/+0.0907事'

The estimated model in (d)-(f) is given by

The coefficients of HU) are estimated from 12 realizations each consisting 
of 600 data samples.

ff(2x = 0,0572 T),应5,20335盘加3土p 皿98X.r
3 l+0.0208z+0.2354?+0.5284?+0.3724?+0.0779?

samples with 腿 estimated using (61). Although the 
theoretical development in section III assumes p 爲 q、 
as the MA(5) example In Fig. 3 shows, eveiy case 
诃q{p can be detected as an ARMAfq, q) system. 
This means of course that some of the reconstructed 
coefficients in the denominator are filled in auto­
matically as zeros, to raise the denominator degree 

to q.

V. Stable Rational Approximation of 
Nonrational Systems

A nonrational system has a transfer function that, 
unlike the rational systems, cannot be expressed as 
the ratio of two polynomials of finite degree. If such 

a system is stable, then it admits a power series 
expansion in I z 丨〈E and the problem is to represent 
this by a rational system in some optimal manner. 
As remarked in the introduction, although Pade 
approximations can achieve this goal, such appro­
ximations need not guarantee stability. Moverover, 
the Hankel matrices generated from the impulse 
response data has no particular rank invariant 
structure In this case. In this context, once again we 
can make use of (4이 to obtain all stable rational 
solutions to this problem.

To start with notice that the Schur extraction 
principle in (24) (25) is perfectly general and hence 
if H(z) is nonrational, then the representation in 
(40) is still valid, where dn + 】(z) in that case represents
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旧(獎)| 

dB

(b) Original/reconst. phase.(a) Original/reconst. magnitude.

(c) Test criteria for model order selection

Fig 3. Reconstruction of an MM出5) model from its partial impulse response 
sequence. The original model corresponds to

7岛)=0.8704 -2.47由+3.5782/-3.656眼+2.03572，'-1.0/.

The reconstructed model is given by

=________ 0.§70卜24714，1：3，：5782/一3.§§6"3+2.0明二LO/
A 1+2.1x10 ~nz-1.5xl0 ~18r+4TlxlO V+2.6x10 +7.2x10 "14? *

a nonratlonal bounded function. Interestingly, as 
remarked there* If +1⑵ is replaced by any rational 
bounded ftinction, we obtain a staUe rationa transfer 
function Hr(z) that interpolates the given impulse 
response sequence {妃金。.This key observation 
can be used to determine interpolating rational 
systems with minimum degree.

Since Pade approximations preserve the optimal 
degree character, if such approximations are also 
stable, then they must follow from (40) for a specific 
rational bounded function dn+l(z). To determine 
such bounded functions, let dn+1(z) = f(z)/g(z) rep­
resent a degree m bounded function that when sub­
stituted into (40) generates an ARMA(p, q) Pade-ap- 
proxlmatlon Hr(z). Thus

口 f、 Q{z} 如(z) g(z} + z ⑵ f(z}
P⑵ an(z] g⑵ + z 九⑵ f(z)
n

=E hkzk^O{zn + x}. (62)

For (62) to represent the Pade approximation, we 
must have D + q d、and once again to respect the

ARMA(p, q) nature of Hr(z), the polynomial f(z) must 
be of degree m— 1 and hence g(z) must be of degree 
nu Thus the formal degrees of F⑵ and Q⑵ In (62) 
are n + m, provided =n, and hence the 
coefficients of …工허 + 허 in the denominator, and
the coefficients of z? + 1,-*,zM+m in the numerator 
must be zeros. As shown in Appendix-B, the 
coefficients of zm+ 1,*--,2w+w in the numerator and 
denominator generate the same equations and 
hence this gives n + (m—/>) + bn—q) =
equations in 2m unknowns. Since n> p + q, there 
are at least 2m equations and they can be used to 
solve for the unknowns. From the above degree 
argument m—p 그 0 and m~q 느 0, or m 그 max(/?( g), 
and hence fbr a given p, q(with 力 는 a), the least com­
plex bounded function dn^x{z] is also of degree p. In 
that case, the desired bounded function dn^x{z] has 
exactly the same form as In (43), and the system of 
equations so obtained has the functional represen­
tation in (45)(48). However, unlike the rational 
case, the system of equations so obtained need not 
yield a solution for g⑵ and f{z\, and even If a sol­
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ution exists there, g(z) so obtained need not be 
strict Hurwitz, and further f(z)/g(z) need not turn 
out to be a bounded function. However, for some p, q 
if f{z}/g{z\ turns out to be a bounded function, then 
Hr{z) in (62) represents a stable ARMA(p,q) Pade 
approximation to the given nonratlonal function. 
Thus every stable Pade approximation to the given 
data has the representation

Q⑵ g(z) + 2 ap+(l(z) f(z)
8(z) = _=

p⑵ 角,+g⑵ g{z} + z bpJrq{z\ /(2)
n

뉴 £ 知2左 + 이KM. (63)
k = 0

v4iere n、»p 누 q、and f(z)/g(z) represents a bounded 
function given by (45)-(48). We summarize the 
above observations as follows:

The necessary and sufficient condition for the 
existence of a stable ARMA(p, q) Pade approxi­
mation to the impulse response sequence is 

that the system of linear equations in (45)-(48) 
generated from the associated Schur polynomial 
coefficients yield a bounded solution of degree q for

in (43). In that case. (51 )-(53) and (63) rep­
resent the d esired stable transfer function.

Interestingly, the above remarks raise the following 
question: Given an H(z) that represents a stable 
(nonratlonal) system transfer function, does there 
always axist a stable ARMA(p, q) Pade approxi­
mation fbr some p and q? Clearly, if such a solution 
exists, then that must follow from (63) with 刀 그 力 + 

for a ratlongil bounded function f(z)/g(z) of degree 
p, that is obtained by sohdng the system of 
equations in (45) (53). Note that due to the presence 
of the z factor In (63),况丿「(z))M 力一1, <5(^k)) = p are 
necessary conditions, provided SGzJz)) = n. Thus

Fig 4. Rational approximation of a nonratlonal system. The original nonratlonal 
transfer function is given by

where
rj / \= Ll+z H f솨h____________ ______________________

;- 1.02-1.75^+? * 허' , 1.09-0.9”+匸0&?可(加匸0.86再>。

The stable Pad、(e approximation ARMA(ll.ll) model is given by ff/i) =* (x),
where

AM =l-2.11U+2.351«2 -0.265/-1.869?+2.459^-1.07&», 
-+0.119?+0.22fe,+0.0557z,+0.0059x w+0.0002&»ll.

如z) -3.571 -9.609z+15.72Or2-12.974?+7.44a«4-2.243z6+1.227?
=-0.555/+0.126/-0.018財+0.000 ""-O.OOOOfc11.
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and

g(z)=go+幻z +…+gpZp

subject to the constraints g厅 0 and nh
In fact, given hk, ^ = 0-*w, there might exist no 

stable Pade approximation, and, moreover, the lowest 
nontrivial stable rationed approximation that matches 
the given data might be of ARMA(n, n) form which 
corresponds to 么 +1 三 0 in (40). However, so long as 
f{z\/g(z\ is chosen to be a rational bounded func­
tion In (62), it represents the class of all stable 
rational transfer functions that interpolate h0, hlt'"hn. 
Thus even if stable Pade approximations and absent 
in a particular situation, by relaxing the Pade con 
straint, other stable rational approximations can be 
obtained.

Figs. 4-5 as well as our extensive computations in­
volving nonrational systems containing logarithmic 
and essential singularities seem to indicate that 
stable Pade approximations always exist In the 

simulations presented here, the original nonrational 
function HU) is used to compute hk, k=Q~^p + q, 
and it is first 'prepared' to generate dk = Q^p q, as 
in (38) (39) and thereby 나le Schur polynomials ap + q 
(z) and bp + (.(z) are generated recursively. From the 
above theorem, since a stable ARMAfp, q) Pad\ e 
approximation to this data must follow from (63) for 
a bounded solution of /(N)/g(z) given by (45) (48), 
those equations are verified for such a solution, and 
the indices are updated in a sequential manner. The 
heavy dots in Figs 4(c)-5(c) indicate the presence of 
such a stage, where (45)448) yi이d a bounded sol­
ution for daw 1⑵= *)/g⑵ that results in a stable 
Pade approjdmation.

Further, if the two consecutive rational functions 
dp十Jz) and(匕 + 亦一仏⑵ turn out to be bounded and 
are related as in the Schur algorHhm, then e0(A q),珏 

(p, q) will be zero indicating the Mnear rational" 
nature of the data. When H(z) is known in advance, 
the percent spectral error

|H(次)I 
dB

0 7r/4 7f/2 3%/4 7F

(b) Original/approx. phase.

(c) Test criteria for model order selection

Fig 5. Rational approximation of a nonrational system with a logarithmic 
singiHarity at z = 1. The original nonrational transfer function is given by

ln(l 一n)

The stable Pade ARMA(15, 9) model is given by Hr (z) =Bw(z)/Ai(z), where

An(z) -1-4.979.7 + 10.732z2-11.928/+4.428/+6.348z5-ll.090/ 
+7.886z7-2.597?-0.022z9+0.293^ 10-0.075z "+0.0038Z12 
+0.00032"+0.000003?14-7.0x10 七%

Bjz) =-0.0093 -0.759z+3.37Zz2-6.456?+6.828z4-3.958/+0.898/ 
+0.211^-0.147^+0.020^.
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히 0 q) = sup(,
丨 旧（双） 丨2— |8（次）|이

———旧（次）丨2 (64)

also may be used fbr model order selection. Notice 
that Fig. 5 represents a transcendental nonmlnimum 
phase system (zero at the origin) with a logarithmic 
singularity at z = L Nevertheless, as seen from Figs. 
5(a)-(c), the ARMA(15, 9) Pade approximation is 
stable and preserves the nonminimum phase 
character of the original system. The abundance of 
stable Pade approximations are evident in Figs 4(c) 
-5(c). Nevertheless a rigorous proof is still la아Ung in 
the general case regarding the bounded character of 
flz)/g(z} for some p, q、and the issue remains 
unresolved.

V. Conclusions

This paper investigates the problem of obtaining 
all stable rational solutions that interpolate the 
given partial impulse response sequence by making 
use of the well known theory of bounded (Schur) 
functions. In this context, a new test criterion is 
developed to determine the model order of rational 
systems, and thereby determine their system 
parameters from the given impulse response sequence. 
The theory developed is further utilized to obtain 
the necessary and sufficient conditions for stable 
Pade approximations of nonrational systems. A 
practical algorithm is developed that translates the 
stability condition into the bounded character of a 
rational function generated from a set of linear 
equations obtained from the Schur polynomial 
coefficients associated with the given impulse 
response sequence. Interestingly, since the present 
technique does not make use of any factorization 
procedure, the nonmlnimum phase characteristics 

of the original system are preserved here.
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