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Extension and Appication of Total Least Squares Method for
the Identification of Bilinear Systems
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ABSTRACT

When the input-output record Is available, the identification of a bilinear system is considered. It is assumed
that the input is noise free and the output is contaminated by an additive noise. It is furttier assumed that the
covariance matrix of tne noise Is known up to a factor of proportionality. The extended generalized total least
squares (e-GTLS) method Is proposed as one of the consistent estimators of the bilinear system parameters.
Considering that the input is noise-free and that bilinear system equation is linear with respect to the system
parameters, we extend the GTLS problem. The extended GTLS problem is reduced to an unconstrained
minimization problem, and is solved by the Newton-Raphson method. We compare the GTLS method and the
e-GTLS method in the point of the accuracy of the estimated system parameters.

1. Introduction

There have been various studies on bilinear systems
due to their simple structure, their similarity to linear
systems and their applicability to real processes
[1-5]. However, there is littie research on the identifi-
cation of bilinear systems In the presence of an
additive nofse. Such methoeds as the Gabr-Rao
method and the Inagaki-Mochizuki method have
been investigatedl4, 5]. The Gabr-Rao method uses
the likelihood function and the Newton-Raphson
method. It is therefore computationally intensive.
The Inagaki-Mochizuki method uses the Volterra
repregentation transformed from the bilinear equation.
Thus it is a complex method.

On the other hand, there are extensive studies on
the identification of linear systems, and the iftera-
ture on the identification of noisy systems iIs exten-

sive(6]. Unfortunately, most of the jdentification
methods applied to noisy linear systems are not

applicable to the identification of noisy nonlinear
systems. Recently, the generalized total least squares
(GTLS) method was successfully applied to the
Identification of noisy linear systems|7.8]. It is poss-
ible‘to apply the GTLS method directly to the identi-
fication of bilinear systems through minor modi-
fications to the covariance matrix of the errors in a
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row of the data mairix. However, the direct appli-
catlon of the GTLS problem neglects the structure of
the data matrix of bilinear systems, which arises
from only the output being corrupted by noise, and
that the bilinear system equation is linear with
respect to the system parameters.

In this paper, we extend the GTLS problem con-
sidering the special structure of the data matrix of
bilinear system equations. We show that the
extended GTLS(e-GTLS) problem is reduced to an
unconstrained minimization problem using the
method of Lagrange multipllers. The ¢-GTLS problem
is then solved iteratively using Newton-Raphson
method(12). Through computer simulation we compare
the performances of the e-GTLS method with those
of the GTLS method.

II. The structure of the data matrix of
bilinear system Equations

We consider the bilinear system which is the
single Input, single output (SISO} and is also a
ttme-Invariant system. The bilinear system shown
fn Fig. 1 is described by the following Eqs (1} and
(2). 1t is assumed that the order of the systern and
the delay of the system are known.
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Fig 1. Bilinear system.

where {#! is the input. {x,} is the uncorrupted
output, { ! is the corrupted output, 1 &} is the addi-
tive noise and ¢ is the delay of the sysiem. We
assume Lhat the covariance matrix of the additive
noise is known up (o a factor of proportionality. For
simplicity we also assume that { is less than p in
Eq. (1).

In general the least square(LS) method is used for
the estimation of the syslem parameters {a;, 5y, ¢4 4,1
when the input and the output ¥, are known. However,
the parameters estimated by the LS method are
biased, for output is corrupted by the noise. Thus
the LS method fails to estimate system parameters
correctly.

Let h be [b". a, ¢! -
over-determined bilinear equations, that is, t=1, 2

cT I". By consldering N

«..N, the system equations are represenied in the
foltowing matrix form.

Yz, -~ 2,)-h=0 (3}
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letDbe (UYZ, - Z,,]. In the data matrix D, only Y
and Z, are subjecl to error duc lo addilive noise.
From the data matrix D it can be observed that there
is a special relation between the matrices Y and Z,. Let
Y be partitioned as [Y, Y, Y,| where Y, =yl € R¥™,
Y, = |y;... y;'+ 1| e RN, Y= |y;'+2,..y;H] c RN x-b
Also, define W, as lu,--u;) € RM*% that is. all the
columns of W, are the k; column vector of U. Then
the following Equation is satisfied.

Z,=W,®Y, (4)

where W, @Y, is the direct or Hadamard product.
Then Eq. (3) is represented as follows by using the
relation of Eq. (4).

U Y W @Y, -~ Wp®Yyl- hx 0 (5)

il. Application of the GTLS method to the
bilinear system identification

In this section the GTLS methed is directly
applied to estimalion of the system parameters. Let
the data matrix D be partitioned as {D, D], where
D, =|U)ERM*Y*Y and D,=[Y W, @Y, - W,QY,|
RVt Only (be matrix D, is subjecl to

error. Then the GTLS pioblem (or the bilinear system
identificalion is described as minimization of "Aﬁ,,

R;lj'-"" " . with respect to ta, bj. cy, 1, and subject to
2

ID, D,) - h=0 and «,= —1 where Ryp, is the covari-
ance matrix of the errors in the data matrix, -1, is
the Frohenius norm and Aﬁz is the error matrix of
D, i.e. Aﬁz :f)z—D-_;, We assume that the covariance
matrix n' Ihe additive noise is known up to a factor
of propa-tirmalily. Substituting Eq. (2) in the matrix
D, and inspecling il, we observe that the error vec-

tor of the 1ih row Adj,, is represented as follows.

Adi=[8y] Azl Azy]
where Ay ! = e - -] and AzZj

:[mH f K€y vt Uy 1—d—k£’r—|.]-

Lel R, be the (p + 1) by (p + 1) covariance matrix
of the additive noisc. Then Ray is represented by Eq.
(6).
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Faalis V=T G A=R.lE /) Ry,lk, nl, m, is the mean
of the input and Rl(k #} is the autocovariance
matrix of the input. Using R,p, in Eq. (6) we can
solved by the generalized singular value decompo-
sition {(GSVD) and the gR factorization methods(7I.

[V. Extansion of the GTLS problem for the
bilinear system identification

4.1. The definition of the e-GTLS problem

The GTLS method. discussed in section 3, does
not consider the spectal structure of the data matrix
D. That is. the error matrices of Y and Z, are treated
independently. So. it is necessary to modify the
GTLS problem so that the relation of Eq.(4) is con-
sidered. From Eq.[4) we observed that if the error
matrix of Y, Le., AY s determined, the error matrix
of Zy, Az 1s determined by AZ, =W, ® Ai’z where Af(g
is the error matrix of Y,. Then the GTLS problem is

extended as minimization of ” AY R/ 2” with respect
to {a;. &;, ¢+, and subject to [U Y'W.®§'2 W,..®\}2]

+h=0 and aq= — 1 where Y-,-=Y,-+AY:‘-‘ AY-.-‘ is the
error matrix of Y; and R., is the covariance matrix of
the additive noise and R, € R#1 "=+ 1 We agsume
that is known up to 2 factor of proportionality. In
the e-GTLS problem the weighting matrix R;,'” is
used for the decorrelation of the error vector Ay; It

can be cxplained as follows. In the ideal case Ay, =
[e: €i-1 ~ei-p] and E[Ay, 87,7 ] =R.. That is, the

estimated error vector is correlated. So, it is nccess-

ary to whiten the error vector by R, ~"/2,

4.2. The e-GTLS method and the ML estimator
Considering ” AY R;'2 ” . in detail. we observe
that the following Equation is satisfied.

“A{' RZ2||%=tr [AY R AYT]

h] N
- T AYRS (87;)" <L te[(57) 89/R:]

=1

(. R.! Is symmetric matrix.}
N - T -
- > rp-}
o[ X (a57)" 43R

N
Let }. [[);:)T }::) be the estimated noise covariance
1=1

malrix iw It is then observed that the e-GTLS problem
concerns maximization of the probability of the noisc

covariance R,,. which is represented by the Wishart

distribution of p(R.) =CIR,| /47 g~1rRa'Ralig),
The likelihood function of p(ﬁe,] is In p[ﬁ,.e) =In
I ~ _ —
C+—2'-{N"Plln|Rce|‘ff[R¢el Rw]- The likelihood
function of is. Then maximizing the ilkelihood func-
tion with respect to the parameters is the same as

mintmizing ¢ (R;l ﬁn] "‘é‘“ (N—Min Iﬁﬁl with res

pect to the system parameters. This Is the ML esli-
mator. In the e-GTLS method the minimization is
performed only to fr(Ry’ Ew] Hence the e-GTLS
method is suboptimal from statistical point of view.

4.3. The solution of the e-GTLS problem

In the e-GTLS problem there are two constraints.
The second constraint @g=—1 can be removed by
the method of Lagrange multipliers. Definc the func-
ton of

- N -~ -~
L{aY.2)=E ayiRL' (8% )
=
+AT{[UY WO, W.®Y, |- h} 7)
where L=, A, - Ay|". Differentialing Eq. {7) with

respect to A; and AJ;,-' we obtaln Egs. (8) and (9).
Because R.;' is a symmetric matrix,

—6—L—2A"R*‘+u +8)7=0 (8)
2y Yy Ree AT
oL .
—~ =uw;b+(y])ta+s)=0 (9)
(]
§;=0 for =0
m
where 8= 18,2+ Sireny) =§! w;; © ¢’ and w; is the

i, row veclor of the matrix W,

$;,=0 Jorl+2<i<p+1

From Eqgs. (8) and (9} we obtain ; and Ay: by some
calculus. They are
2{ylta + s} +u;b}

Y latsi Roa sy (o
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and

2tylla+s;}+ujbl
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Substituting Eq.(13) into the e-GTLS formulation
we obtain the e-GTLS problem as Minimization of

N - -
L AY[RAYY =

=]

N {y;ta +s) + u;b}T {y{{a +s;) +u;b:

. (a+8) Rofa +5) with

i

f

respect to {a;, &, ¢3,,} and subject to g,= — 1. Defin-
Ing the numerator and denominator in the e-GTLS
problem as h” Ny h={y (@ +s) +u{b}T {yz.r(a+s.-)
+ ut.’b} and

h"™ A; h=(a + 9)" R.la + s;) where
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We get the eGTLS problem as minimization of ph)

with respect to {4;. b;, ¢44,} and subject to g,= —1
N
h"N, h
where ph)=} —————.
A= T Ak
The above ¢-GTLS problem can be viewed as an
unconstrained minimization probiem, for @, can be
fixed to -1. The e-GTLS problem is a nonlinear

optimization problem. So, it is impossible to solve
the eGTLS problem In closed form. To solve the
problem, we adopted the Newton-Raphson method
with the first and second derivatives of. p(h) with
respect to &; and 4 4,(12].

V. Simulation results

In this section, we examine the effectiveness of
the e¢-GTLS method and its recursive algorithm
through computer simulation. The following bilinear
model is used in our simulation.

x=15x%_,—-07x%_.,+08%+05%_,+024 x,_,14
(12)

w=x+ce (13)

where e is a constant for varying SNR. The input
serles {7} is generated from AR(1) model

u'=0.5u1+fh [14]

where {#;} is a gaussian white noise N(0, 1). The
additive noise {¢;} satisfies ARMA (2, 1)

€f=0,9€)-.] +0.4e;_2+V,+0.6V1—.| (15)

where {v} is a gaussian white noise N(0, 1) as
well as {#;}. Fig. 2 shows the examples of the serles
{t}. {¢,} and. In Fig. 2¢ the dotied line represent the
time serles generated by ARMA(2, 1) model which
neglects the term of ¥,.,# in Eq.(12). The ¢-GTLS
and GTLS methods were used to estimate the
parameters of the bilinear system described by Eq.
(12) and (13} with the given noise covariance matrix.
The covariance matrix of the noise is given by the

following mairix.

1. 0738 0.262
R, =| 0.738 1. 0738
0.262 0.738 1.

where the diagonals are scaled to 1 for simplicity.
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(a) input sequences.

el et

0 100 200 300 400 500

{b) additive noise sequences.
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{(c)the output sequences of the bilinear and linear
system.

Fig 2. The input, noise and the output of the bilinear sys-
tem.
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One hundred Monte Carlo trials were performed at
each SNR.

The mean and standard deviation of the estimated
system parameters by the both method were obtained
for SNR’s ranging from 18 dB to 30 dB at every 3dB
intervals. 500 samples were used for each trial.
Figs. 3 and 4 show the blas and standard deviation
of the estimated parameters through both methods.
From the figures it is observed that the bias and the
variance of the estimated parameters via the e-GTLS
method are smaller that those via the GTLS method.
Especially, the standard deviations of the AR and
are reduced from one quarter to one tenth of those
via the GTLS method.
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Fig 4. Bias
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V1. Conclusions

In this paper we have presented a new method of
estimation of the parameters of bilinear systems.
Considering the structure of the data matrix of the
bilinear system equations, we extended the GTLS
problem and defined the ¢-GTLS problem. We proposed
the solving method of the €-GTLS problem using the
Newton-Raphson method. Through the computer
simulation we showed that the e-GTLS method is an
unblased estimator of the bilinear system parameters,
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and that the perfoermances of the e-GTLS method
are better than those of the GTLS method.
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