Dielectric and electric properties of Sol-Gel derived PZT thin Films

Hong Kwon, Byong-Ho Kim

Abstract

Sol-Gel derived ferroelectric Pb(Zr0.2Ti0.8)O3 thin films have been fabricated on Pt/Ti/SiO2/Si substrate. Two kinds of fast annealing methods, F-I (six times of intermediate and final annealing) and F-II (one final annealing after six times of intermediate annealing) were used for preparation of multi-coated PZT thin films. As the annealing temperature was increased, high capacitance could be obtained, for instance, 2700A-thick PZT thin film annealed at 680°C had a capacitance value of approximately 20nF at 1kHz. In addition, it is found that the dielectric constant is a function of the perovskite phase fraction. In case of F-I method, PZT thin film had a remanent polarization(Pr) of 8~15μC/cm² and a coercive field(Ec) of 35~44KV/cm according to annealing temperature, whereas PZT film fabricated by F-II method had as high as 24~25μC/cm² and 48~59KV/cm, respectively. As a result of measuring Curie temperature, PZT thin film had a range of 460~480°C by F-I method and more or less higher range of 525~530°C by F-II method, which implied that different microstructures could cause the different Curie temperature. Through I-V measurement, leakage current of PZT thin film fabricated by F-I and F-II methods was 64nA/cm² and 2.2μA/cm² in the electric field of 100kV/cm, respectively.

Key Word (중요 용어) : Sol-Gel Process (솔-겔 방법), Ferroelectric (강유전성), PZT Thin Films (PZT 박막), Fast Annealing Method (급속 열처리법), Dielectric Properties (유전특성), Leakage Current (누설전류)

1. 서 론

20년전 bulk 형태의 강유전체 재료가 개발된 이래 메트리스 타입의 메모리는 작동전압이 높고 half-select 문제에 기인한 메모리 손실, fatigue 및 메모리 set 등의 문제점이 제기 되어 왔다. 또한 최근에는 전자기기의 소형화 및 집적화의 추세로 bulk 재료가 한계점에 도달한 상태이다. 현재 각 메모리 사이트에 박막으로 강유전 메모리 재료를 제조하거나, Si CMOS 회로에 강유전 메모리 재료를 덧붙여 상기의 문제점 해결에 나아가고 있으나. 이에 박막재가 적용된 디바이스가 생산되고 있다. 특히 외부전계에 의한 자발분극과 스위칭 특성의 우수한 강유전체 PZT 박막은 컴퓨터 및 마이크로 프로세서 분야에서 재료 및 공정개발이 활발히 연구되고 있다.

PZT 박막을 DRAM에 응용하기 위해서는 높은 유전성장, 낮은 누설전류 및 높은 전장 특성의 전기적 성질이 요구되며, 하부전극의 개발, 반도체 공정에 적용할 수 있는 낮은 온도에서의 재조기기술이 필요하다. 따라서 본 연구에서는 솔-겔법으로 PZT 박막을 코팅하고, 높은 전장밀도를 갖는 치밀한 박막을 제조하기 위하여 열처리 및 급속열처리 방법 (fast annealing method)을 사용하였다. 급속열처리는 승온속도를 수백 °C/min 이상으로 박막을 열처리하는 방법으로 단시간내에 어닐링하기 때문에 열처리의 절감뿐만 아니라 기판과 박막간의 상호
확산을 최소화하여 기판의 손상과 핵발물질의 손실을 최소화할 수 있는 장점으로 가지고 있어 반도체공정에서 많이 사용되고 있다. PZT 박막제조에 금속염처리는 파이로크로토방이 형성되며 증온을 통한 영역을 바르게 지나침으로써 파이로크로토방의 형성을 억제하고 페로프카이트상의 핵성을 촉진하여 저온에서 단일 페로프카이트상을 형성하는데 효과적이다. PZT 박막을 반도체 메모리소자에 응용하기 위해서는 낮은 공정온도가 요구된다. 열처리온도가 높으면 Si-계의의 도핑 프로파일을 변화시키며 아니라 확산에 의해 하부전극이 산화되어 동 각 층간의 제전 및 박막의 표면특성 을 저하하기 때문에 반도체공정에 응용하기 위해서는 낮은 공정온도가 필요하다. 따라서 본 연구에서는 열처리 조건의 변화에 따른 PZT 박막의 미세구조 및 성상과 가동시간에 영향을 미치는 영향에 대하여 조사하였다.

2. 실험방법

2.1. 코팅용 PZT 솔 및 박막의 제조

본 연구에서 제조한 PZT 박막은 Kim 등9)가 보고한 방법에 따라 Zr:Ti의 농도 52:48 조성인 PZT 솔을 합성하기 위하여 용매로 약 Lead acetate trihydrate, Zr-propoxide 및 Ti-isoproplxide를 사용하였으며, 용매로는 프로판올 과 2-메톡시에탄올을 사용하였다. 열처리시 Pb의 흘러나 흩어지지 않기 위하여 Lead acetate trihydrate는 질량비로 5wt% 과성 적절하였으며, 진공 진조 후 110°C에서 2-메톡시에탄올에 녹여 용액 상태로 준비하였다. Zr 및 Ti 염산아이드는 아르곤 분기회기의 glove box에서 청정한 후, 냉각온도의 에틸로케타손(EAcAc, ethylacetocetate)의 용수로 담가 흐러지며 흐러지며 가수분해 및 촉합양성체를 낮추어 내장상에서 함께 형성된 Zr-Ti 복합알코시드를 준비하였다. 두 용액을 4구 물라스크에서 혼합한 후, 자분한 화학적 반응을 위하여 1시간 동안 refluxing 하였으며, 촉매로는 성분이 암모니아수 0.03%를 첨가하였다. 가수분해 후 크레이스지의 DCCA(drying control chemical additive)의 용수로 담가 물리적 촉합화학적 반응을 위해 내장상에서 적당한 0.3M PZT 코팅용 솔을 합성하였다. 기판으로는 MIM(metal/insulator/metal) 가很清楚한 것을 형성하기 위해서 블록(Platinum)가 하부전극으로 1500 A로 코팅되어 있는 Pt/Ti(1000A)/SiO2(1000A)/Si (Test용, Silicon Quest International Inc., USA)

기관을 사용하였다. 접-코팅법을 사용하여 인상속도 4cm/min로 6회 멀타코팅으로 약 2700A의 박막 형성하였으며, 열처리시 억선속도 약 300°C/min의 금속염처리 방법을 사용하였다. DTA 분석 결과3)에 근거하여 유기물의 탈리와 같은 중간열처리는 370°C, 최종열처리는 페로프카이트상의 형성은 640~700°C에서 하였으며, F-1의 경우는 중간열처리와 최종열처리를 반복하여 코팅하는 방법으로 박막의 두께를 조절하였으며, F-II는 중간열 처리를 반복하여 코팅한 후 1회의 최종열처리된 경우이다.

2.2. 분석 및 성능-적 특성 평가

열처리 온도 및 시간에 따른 박막의 성상이 거동된 A를 평가하기 위해 이온 XRD(CuKα, 30kV, 30mA, Philips, PW 1710) 분석을 하였고, 열처리 온도에 따른 성상이 가동성에 관여하기 위하여 SEM(JEOL JXA-8600S) 분석을 하였다.

하부전극으로 Pt가 1500A의 두께로 코팅되어 있는 Pt/Ti/SiO2/Si 기판을 사용하여 열처리 조건에 따라 약 2700A의 PZT 박막을 제조한 후, 상부전극은 shadow mask를 사용한 진공증착법으로 Pt를 적층 1mm로 증착하여 Pt/PZT/Pt 캐세라터를 제조하였다. 박막의 전장용량(capacitance) 및 C-V 특성은 LF Impedance Analyzer (HP4192A)를 사용하여 측정하였다. 전장용량은 0.1~100 kHz 의 주파수 범위에서 측정하였으며, C-V 특성은 1kHz의 주파수에서 -10V~10V의 바이스의 전류에 서 측정하였다. 또한, Modified Sawyer-Tower Circuit10)을 이용하여 60Hz, ±6V의 인가전압에 서 시험특성을 측정하였다. 스냅온에서 600°C까지 승온하면서 LCR meter(HP4263A)를 이용하여 온도에 따른 유전율변화를 관찰하여 코팅온도를 결정하였다. 박막의 전기적 특성은 High Resistance Meter(HP4339A)를 사용하여 0.1~40V의 전압범위에서 기판전류를 측정하였고, 주의 전자과 방해를 차단하기 위해 Copper Shield Box 안에서 측정하였다.

3. 결과 및 고찰

3.1. 중간열처리 온도의 효과

백금이 코팅된 기판을 사용하여 F-2방법으로 PZT 박막의 페로프카이트 단일성을 얻기 위하여 열처리온도를 700°C까지 증가시키며 ITO 기판과 마찬가지로11) 다소의 파이로크로토상이 전존함
그림 1. F-Ⅱ방법에 의한 여러 가지 온도에서 열처리한 PZT박막의 X-선 회절 결과:

(a) 2700Å 박막(중간 열처리 온도: 400℃), (b) 중간 열처리한 1300Å 박막 그리고
(c) 2700Å 박막(중간 열처리 온도: 37℃).

Fig. 1. XRD patterns of PZT thin films annealed at various temperatures using F-Ⅱ
method; (a) 2700Å films (intermediate annealing temperature: 400℃, 10 min.), (b) 1300Å
films annealed at different intermediate annealing temperatures before final annealing
and (c) 2700Å films (intermediate annealing temperature: 370℃, 10 min.).

그림 2. 여러 가지 온도에서 열처리한 2700Å PZT 박막의 SEM사진:
(a) F-Ⅰ방법, (b) F-Ⅱ방법, (c) F-Ⅱ방법에 의한 PZT박막의 마모면.

Fig. 2. SEM micrographs of 2700Å PZT films annealed at various temperatures; (a) by F-Ⅰ, and (b) F-Ⅱ method, (c) Cross sections by F-Ⅱ method.

울 XRD결과(그림 1-(a))로부터 알 수 있었다.
700℃의 고온열처리에서도 준안정성인 파이로클로로스로도 호소되어 기존과는 다른 온도 400℃에
서 F-Ⅰ의 방법으로 다중코팅하면 이미 비정질의
PZT 박막은 파이로클로로스로 진이됨으로, 파이로클로로소의 배터리스상태에서 페로프로스카이트
단일성을 얻기 위해서는 700℃ 이상의 열처리가 필요할 수 있다. 따라서 PZT 박막의 다층코
3.2. 박막의 미세구조
그림 2-(a)는 F-I 방법으로 제조한 PZT박막의 열처리 온도에 따른 미세구조이다.
640°C의 미세구조에서 구형의 rosette의 0.6μm의 크기로 다소 clustering이 일어난 상태로 존재하고 있으며, 상당량의 파이로클로로상이 간존하고 있음을 알 수 있다. 그러나 680°C의 열처리에서는 완전한 페로프스카이트 단일상을 형성할 수 있었다. 따라서 중간열처리온도 400°C에서 370°C로 낮추었을 때 페로프스카이트 단일상의 PZT 박막의 형성온도를 낮출 수 있음을 알 수 있었다. 또한 그림 2-(b)는 F-II의 방법으로 제조한 PZT 박막의 미세구조로 rosette의 형태는 살활할 수 없었으며, 페로프스카이트와 파이로클로로상의 경계는 나타나지 않았다. 그림 2-(c)의 PZT 박막의 경우 단면과 tilting된 미세구조에서도 균일한 PZT 박막을 확인할 수 있었다. 그림 3에 열처리방법에 따른 페로프스카이트 형성과정을 모식적으로 나타내었다. 즉 F-I는 최종열처리의 반으로 large rosette의 미세구조가 형성되며, F-II는 1회의 최종열처리를 통하여 박막 전체에 핵 생성과 성장이 동시에 진행되므로 fine rosette의 미세구조가 형성되는 것으로 생각된다.

Fig. 3. Growth mechanism of rosette formation process.
그림 4. F-I 방법으로 여러 가지 온도에서 열처리한 2700Å PZT 박막의 유전특성을; (a) 정전용량 및 정전밀도 그리고 (b) 유전손실.

Fig. 4. (a) Capacitances and capacitance density and (b) loss tangent of 2700Å PZT thin films annealed at various temperatures by F-I method.

0.05에서 0.15의 값을 나타내었다.

그림 5는 F-I 및 F-II 방법에 의한 2700Å PZT 박막의 이력특성곡선을 측정한 결과이다.

Hysteresis loop로 부터 계산하여 표 1에 나타낸 \(P_r, P_{\text{max}} \) 및 \(E_s \)의 값과 같이 F-I의 방법으로 제조한 PZT 박막은 최종 열처리온도가 증가함에 따라 \(P_r \)값이 8~15μC/cm²의 범위를 나타내었지만, F-II의 방법으로 제조한 PZT 박막의 잔류분극값은 열처리온도가 증가함에 따라 24~25μC/cm²의 높은 잔류분극값을 나타내었다.

한편, 양전체 \(E_s \)는 열처리 온도에 따라 F-I에서는 35~44 kV/cm, F-II에서는 48~59 kV/cm의 값을 나타내었다.

그림 6은 급속열처리방법에 따라 6회 코팅하여 최종열처리한 PZT 박막(두께 2700Å)을 상온에서 600℃까지 10℃/min으로 슬로우히면서 1kHz에서 측정한 유전율 변화를 나타내었다.

그림 5. 2700Å PZT 박막의 이력곡선; (a) F-I 방법 (b) F-II 방법

Fig. 5. Hysteresis loops of 2700Å PZT films by (a) F-I, and (b) F-II method.

큐리온도에 해당하는 유전율 극대치는 발코 PZT의 ~375℃11)와는 달리 F-I의 경우, 약 460~480℃의 범위에서 나타났으며, F-II의 경우에는 다소 증가된 525~530℃를 나타내었다. 이는 상온에서 안정성으로 나타난 rhombohedral상이 온도가 증가함에 따라 tetragonal상으로 전이가 F-I의 경우, 약 400℃에서 나타나 후에 유전율이 급격히 증가되어 480℃ 부근에서 상전달상인 cubic상으로의 전이가 일어나 급격한 유전율 감소가 일어난 것으로
표 1. 열처리 방법에 따른 2700A PZT 박막의 P_r, P_{max} 및 E_c 값.

<table>
<thead>
<tr>
<th>Annealing Temp</th>
<th>F-I method</th>
<th>F-II method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P_r (C/cm²)</td>
<td>P_{max} (C/cm²)</td>
</tr>
<tr>
<td>660°C</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>680°C</td>
<td>13</td>
<td>38</td>
</tr>
<tr>
<td>700°C</td>
<td>15</td>
<td>38</td>
</tr>
</tbody>
</table>

생각된다. 한편, F-II의 경우에는 tetragonal상으로의 전이가 약 480°C 부근에서 일어나고, 530°C 부근에서 cubic상으로의 전이가 진행된 것으로 생각된다. 열처리 방법에 따라 큐리온도의 차이가 생기는데, 각 열처리방법에 의해 형성된 PZT 박막의 미세구조 차이 때문에 생각된다. 즉 F-I 방법이 F-II 방법에 비해 rosette의 크기가 크므로 큐리온도는 F-II에 비해 낮은 온도에서 나타났으며, 큐리온도에서의 최대 유전율을 가진 rosette의 크기가 큰 F-I의 값이 다소 높은 것으로 나타났다. 이 결과는 PZT bulk 세라믹스에서 나타나는 결과와 일치하고 있다.

그림 6. 680°C에서 열처리한 2700A PZT 박막의 온도에 따른 유전율 변화.

Fig. 6. Temperature dependence of dielectric constant in 2700A PZT thin films annealed at 680°C.

3.4. 박막의 I-V특성

그림 7은 F-I 및 F-II의 방법으로 열처리된 2700A의 PZT 박막의 I-V 측정결과이다.

그림 7. 2700A PZT 박막의 I-V특성.

Fig. 7. I-V characteristics of 2700A PZT thin films.

660°C에서 F-I 방법으로 열처리된 PZT 박막은 varistor type의 누설전류특성을 보였고, 680°C에서 F-II 방법으로 열처리된 PZT 박막은 space charge limited conduction(SCLC) type의 특성을 보였으며 100kV/cm의 전계에서 64nA/cm²의 누설전류값을 보였다. 이는 그림 2의 SEM결과와 비교해 보면 미세구조와 전기적 특성의 상호관계를 알 수 있다. F-I의 PZT에서는 페로프스카이트상 사이에 파이로플로로상이 미치는 grain boundary처럼 공존하고 있음을 확인할 수 있는 반면 F-II의 PZT는 규칙한 상태임을 알 수 있다. 즉, PZT 박막의 누설전류특성은 미세구조와 관련이 있으며 또한 공정중에 PbO의 함량을 보상하기 위해 파이 Pb의 점가로 화학양론을 맞추거나 불순물의 점가(Nb, La 등)를 전기전도에 기여하는 Pb 공분을 보상하여 누설전류특성을 촉상시킬 수 있을 것으로 생각된다.

4. 결론

술-절 닫-코팅에 의한 PZT 박막체조시 급속열처리 방법에 따른 박막의 상관이 거동, 미세구조, 유전 및 전기적 특성의 평가한 결과는 다음과 같다.

1. Pt/Ti/SiO₂/Si 기판을 사용하여 급속열처리시 중간열처리온도를 400°C에서 370°C로 낮추면서 660°C에서 페로프스카이트 단일성을 형성할 수 있으며, F-I 방법으로 680°C에서 열처리하여 제조
한 2700A 두께의 PZT 박막은 1kHz에서 유전율이 약 742(정격밀도: 25ppf/μm²)이었으며, 잔류분극 및 합전자는 각각 13 μC/cm² 및 44 kV/cm이었다.

2. PZT 박막의 귀리온도 측정결과 F-I의 경우, 약 480℃의 온도에서 나타났으며, F-II의 경우에는 다소 증가한 530℃를 나타내었다. 이는 각 열처리방법에 의해 형성된 PZT 박막의 미세구조 차이에 기인한 것으로 생각된다.

3. PZT 박막의 I-V 측정결과 F-I 방법으로 열처리한 PZT 박막은 varistor type, 680℃에서 F-II방법으로 열처리한 PZT 박막은 SCLC type의 특성을 보였으며 100kV/cm의 전력에서 64nA/cm²의 누설전류값을 보였다.

참고문헌

저자소개

김병호

홍권