비정질 실리콘 박막 트랜지스터 히스테리시스 특성의 온도의존성

Temperature Dependent Hysteresis Characteristics of a-Si:H TFT

이우선*, 오금곤*, 장희구**
(Woo-Sun Lee, Kum-Kon Oh, Eui-Goo Chang)

Abstract

The temperature dependent characteristics of hydrogenerated amorphous silicon thin film transistor (a-Si:H TFT) with a bottom gate of N-Type <100> Si wafer were investigated. Drain current on the hysteresis characteristic curve showed an exponential variation. Hysteresis area of TFT increased with the gate voltage increased and decreased with the small gate voltage. According to the variation of gate voltages, drain current of TFT increased by temperature increase, and hysteresis characteristics mainly depended on the temperature increase. The hysteresis current showed negative characteristics curve over 383K. The hysteresis occurrence area and the differences of forward and reverse sweep were increased at the higher temperature. Hysteresis current of L(on/off) ratio decreased at the lower temperature and increased at the higher temperature.

Key Word(중요용어) : TFT(박막트랜지스터), Hysteresis(히스테리시스), Temperature dependent(온도의존), PECVD(프라즈마 화학 기상장착)

1. 서 론

오늘날 산업에서 중요한 부분을 차지하게 된 수소화 비정질 실리콘 박막 트랜지스터(a-Si:H TFT)는 제조 공정상 중대한가에 입기 많은 물질 중 큰 면역에 균일하고 쉽게 중대 할 수 있고 전 공정과정이 350℃ 보다 낮은 온도에서 공정을 진행 할 수 있다. LCD(liquid crystal display)의 기판으로 그라스(glass)를 사용할 수 있는 장점이 있으며 시스템 비용을 저렴하게 하기 때문에 고체 영상 견지기21), 박막형 판리회의 23) 반도체 표시기 23), 웹-탑(jap-top) 컴퓨터 23), HD-TV 등에 이용이 증가되고 있는 새로운 표시기 반도체 소자이다.

비정질 실리콘 TFT 제조공정시 플라즈마 CVD 를 사용하므로 진공 상태에서 계속적으로 게이트 질연막과 비정질 실리콘을 중성 할 수 있으며 저온상태에서 수행하므로 아주 얇고한 계면을 얻을 수 있다. 1970년대 초부터 비정질 실리콘은 반도체 다이버스 용접에 관한 물질로 관심을 갖게 되었다. 비정질 실리콘은 단결정 실리콘과 비교한 특성을 가지고 있기 때문에 많은 반도체 소자에 비정질 실리콘을 이용하기 위해 연구되었다. 지금까지 연구된 TFT는 HD-TV discharge, Compu-

터 display, Image sensor, Airplane cockpit, 등의 전자 압력이 대부분으로, TFT에 관한 주요 연구내용을 보면, TFT 구조에 대한 이론적 분석과 I-V 특성을 에너지계의 구조적인 특성에서 분석 하였으며, TFT의 정점등적 및 CAD 모델링에 대해서 연구의 전점이 있었고 I-V 온도 변화 특성에 대한 CAD 모델을 구체화 한 것은 반도체 소자로서 TFT를 이용한 대규모 반도체 디스플레이에서 로직회로에 들어가는 단자수를 줄일 수 있게 되어 새로운 철학 로직회로의 개발에 기여 하게 되었다. Active Matrix 방식에 따라서 배열 되는 디스플레이가 개발 되었고, 2차원 수치 시뮬레이션 프로 그램이 개발 되었으며, Ambipolar TFT와 모델이 개발 되었고, 이것은 제어 할 수 있는 로직회로가 개발 되었다.

비정질 실리콘 TFT 상용화 및 대량 생산을 할려 면 I-V 및 C-V 특성의 온도의존성에 대한 연구가 진행되어야 할 것이다. 히스테리시스 현상을 최소화한 I-V 온도의존 특성을 규명한 후 TFT 다이버스를 설계 하는 것이 해결의 한 방법이다. TFT I-V 특성에 영향을 미치는 요인으로는 여러 가지가 있으나, 주로 얇고한 계면의 감소가 제일 큰 요인이 되고 있으며 이는 온도 변화에 따라서 크게 달라진다. 따라서 실용화 되고 있는 휴대용 컴퓨터 및 정보기기의 LCD 파널
2. Bottom 캐이트형 비정질 실리콘 박막 트랜지스터의 제작

본 연구에서 설계하여 제작한 a-Si:H TFT의 구조는 그림 1과 같다. a-Si:H 층은 N-type의 100번 원시 실리콘 웨이퍼에서 제작된 층은 H2O2:H2SO4=1:1 용액에 소요한 시간과 하온도 3차 분산에서 제작하였다. 제작된 실리콘 웨이퍼의 재거 중성화하여 1500A 두께의 SiO2를 성장시켰으며 방전 프라즈마 CVD(chemical vapour deposition) 방법에 의하여 a-Si:H 층을 증착한 다음 전도성 PR(photo resistor) 코팅하고 하온 재거 중성화한 a-Si:H 층을 RIE(reactive ion etch) 로 제거하였다. a-Si:H 층은 SiH4 가스를 이용하여 제작하였고 재거 중성은 RF Power = 6 W, Temperature = 260 ºC, Pressure = 0.35 Torr, SiH4의 Flow Rate = 50 sccm, Time = 10 minutes 상태에서 진행하였으며, 두께가 700Å 되게 하였다.

![그림 1. 비정질 실리콘 박막 트랜지스터의 제작 구조](image)

Fig 1. Fabricated a-Si:H TFT

드레인과 소스의 음극(ohmic) 콘택트를 위하여 1x10^{13} ions/cm^2, 30 KeV의 N⁺ 이온으로 이온주입으로 주입하고 그 위에 알루미늄을 1,000Å 두께로 증착하고 어닐링하여 드레인 소스 전극을 형성하였다. 소스와 드레인 전극 층은 Al-Si(10%)를 RF스마트렌더 시스템을 이용하여 증착하고 어닐링을 행하였으며 Metal etch 한 후 450°C에서 1시간 alloying하였다. 어닐링 조건은 Temperature = 200°C, Pressure = 0.48 Torr, Hz = 30 sccm/45sccm, Time = 30 minutes에서 진행하였다.

공정을 간단하게 하기 위해 세 단계로 마스크 작업을 하였다. 세 단계 마스크 작업은 캐이트형성 마스크, a-Si:H 형성 마스크 그리고 소스-드레인 형성 마스크이며 소스-드레인 마스크는 이온주입과 급속화에 공통으로 사용되므로 공정 단순화를 위한 것이 있다. 제작된 마스크 폭은 1,000μm이고 채널 길이는 각각 25, 50, 75, 100, 150, 200μm로 한 웨이퍼 다이에 설계하였다. 그중 2개의 디바이스는 500, 1,000μm의 채널 폭에 채널 길이는 10μm으로 제작하였다.

TFT 헤스터리시스의 제작의 설계를 하기 위해서는 외부에 제작된 웨이퍼를 Tempress Device Die Saw를 이용하여 각각의 각각의 마스크를 투과(packaging)하여 승점으로 면 303-383K 범위로 제어할 수 있는 전기온실 온도에 압축 알루 밸-크로백(Alumel-chromel) 열전패를 디바이스에 연결하고 다시 이 열전패를 외부로 연결하여 computerized thermocouple meter(MHS1)을 이용하여 디바이스 온도를 측정하였다. 디바이스 온도 변화의 헤스터리시스의 I-V 및 제한 측정은 IBM 80586 컴퓨터에 의하여 제어되는 HP4154A Semiconductor Parameter Analyzer를 사용하여 잠금 분위기의 Dark Probe Station에서 측정하였다.

3. 실험결과 및 분석

채널폭 1000μm과 채널길이 10μm의 비가 W/L = 10 일때 제작한 TFT의 전자적 특성과 드레인전류류의 V_{th}-I_{θ} 헤스터리시스특성 곡선을 온도범위 303K - 363K에서 그림2와 나타낸다. 전자전압은 -15V에서 15V까지 축정하였으며 제작한 TFT는 헤스터리시스 특성곡선을 나타내었다. V_{th} 값은 -15V에서 15V까지 측정하였다. I_{θ}는 최초에는 약간 감소를 보이며 363K의 경우 톨론 전압(turn on voltage)이 되는 -6V를 지나면서 I_{θ}는 점차 증가하며 제작 현상으로서 -2V에서 급상승을 보이다가 톨론 전압(turn off voltage)이 13V에서 I_{θ}는 순 방향으로 포화되어 디바이스의 상승을 보이지 않는다. 또한 15V에서부터 -15V로 전압을 감소시키고 8V 부근에서 I_{θ}가 급격히 감소함을 보이기 때문에 3V에서 I_{θ}는 다단계 감소하고 압박향으로 불안정한 폭과 양을 보인다. 이와 같은 순방향(forward sweep)과 역방향(reverse sweep)에 의해 헤스터리시스특성을 나타내는 I_{θ}-V_{th} 15V의 전압에서 제작되어서 15V에서 8V의 전압에 1온도 증가와 더불어서 늘어지게 되었다. 온도가 증가할수록 I_{θ}가 높아지게되는 것은 TFE 채널에 의한 비정질 실리콘의 원자가 고온으로 인하여 더더욱 활성화되어
활성화 전자가 계속 불어나게 되므로 전도성의 더 많은 전자의 역가가 일어나서 전자의 활성화 에너지가 증가되기 때문에 생각된다. 순방향과 역방향 전류의 지수함수적인 변화는 비결절 실리콘의 에너지 밴드 가장자리에 국부적인 상태밀도의 존재로 인한 국부적인 원자 결합이 생기며, 멍글링 본드에 의한 상대결합에 의해서 활성상태와 국부적인 상태의 원자 결합이 생긴다. 따라서 순방향과 역방향 전류의 지수함수적인 변화가 일어나고 결과적으로 드레인 전류의 히스테리시스는 순방향과 역방향 전류의 차이가 된다[5].

![그림 2: 히스테리시스 곡선](image)

그림 2. 온도 303K-363K에서의 히스테리시스 특성

Fig 2. Hysteresis curves at 303K-363K

게이트 전압 V_g 증가에 따른 히스테리시스 현상은 나타내는 드레인전류 I_d의 히스테리시스 순방향 특성곡선의 온도 의존성을 그림 3에 나타낸다. V_g가 -15V에서 온도가 303K ~ 383K까지 증가할 때 I_d는 증가함을 보였으나 V_g가 15V에서는 온도가 303K 부터 363K까지 I_d는 증가하고 383K에서 I_d는 감소하게 되어져 게이트 전압 9V 이상에서 TFT의 I_d는 온도에 대한 부정 특성을 나타낼을 보였다. 부정특성이 일어나는 현상은 MOSFET IC에서는 같이 다이어스 채널에서 고온으로 인한 활성화 전자 이동이 감소되기 때문이 다.

TFT 히스테리시스특성 곡선은 역방향 특성곡선의 온도의존성을 그림 4에 나타낸다. 역방향 특성곡선은 303K에서 363K까지 온도가 증가할때 따라서 순방향 특성 곡선보다 턴은 전압이 높고 턴오프 전압이 빠르게 되었다. 그 이유는 비결절 실리콘 층에 희석하여 존재하는 국부적인 상태결합으로 인해서 전하의 동작으로 인한 시간차이 때문에 턴온과 턴오프의 시간적인 차이가 생기고 히스테리시스 발생의 주요한 일부 요인으로 생각된다.

온도영역 303K부터 383K 채널 V_g 증가에 따른 I_d 히스테리시스 발생영역을 그림 5에 나타낸다. 게이트 전압 -15 ~ 15V, 온도영역 303K 부터 383K 범위에서 역방향 전류와 순방향 전류를 기준으로
그래프 5. 히스테리시스 발생영역의 온도의존성
Fig 5. Temperature dependency of hysteresis area

히스테리시스 발생영역은 온도가 증가할수록 크게 되었으며 발생전압의 범위도 넓게 되었다. 383K에서 V_g가 9V일 경우 I_d가 363K일 때보다 작아짐을 보였다. 이와 같이 히스테리시스 발생영역이 온도가 증가함에 따라 커지는것은 고온장수록 비정질 실리콘층의 국부적인 상대화함으로 전자의 트랜드 현상이 더욱 증대되기 때문이다.

온도증가에 따른 히스테리시스특성 곡선의 순방향 특성 곡선의 턴온전압 V_g(on)과 역방향 특성 곡선의 턴온전압 V_g(on)을 비교하여 그림6에 나타낸다. V_g(on)은 온도증가에 따라 증가하였으나 V_g(on)은 온도증가에 따라 감소함을 보였는데 303K~383K 범위에서 ΔV_g(on)은 1.5V이고 ΔV_g(on)은 2.5V를 나타내서 ΔV_g(on)이 1V 크게 되었다. 이것은 비정질 실리콘층의 활성화 전자의 에너지가 ΔV_g(on)에서 더 크게 변화하게 되기 때문이다.

온도범위 303K~383K에서 히스테리시스특성을 나타내는 순방향 온전압 V_g(on)과 역방향 온전압 V_g(on)의 차이 곡선을 그림7에 나타냈다. 이는 히스테리시스 발생 시차전압이 높아 온도가 증가할수록 히스테리시스 발생시작 전압은 거의 선형적으로 증가 됨을 나타내어 일반적으로 반도체 특성에서 볼 수 있는 온도에 대한 포지티브(positive)특성을 나타내게 된다.

그래프 7. 히스테리시스 발생시차전압의 비교
Fig 7. Comparison of hysteresis occurrence voltage

온도증가에 의한 히스테리시스 순방향 온전류 I_d(on)과 역방향 온전류 I_d(on)의 비교를 컴퓨터에 의한 polynomial curve fit하여 그림8에 나타냈다. 히스테리시스 순방향 및 역방향의 온전류 특성 I_d(on)과 I_d(on) 모두 온도증가에 따라 비례적으로 증가함을 보였고 높은 온도에서 활성화 전자가 더욱 더 활성화 되기 때문에 고온에서 I_d의 차이가 더 크게 되었다.

순방향과 역방향의 온오프 전압 V_g(on), V_g(off)을 서로 비교한 것을 그림9에 나타내는데 온도증가에 따라서 이들 전압은 선형적으로 약간의 감소를 보였고 이들 전압의 차이도 거의 변하지 않았음을 보였다.

온도 영역 303K부터 383K까지 온도가 증가함
에 따른 허스테리시스 전류 I_{on}과 I_{off}의 범위를 그림8에 나타낸다. I_{on}, I_{off}의 범위는 낮음 온도에서 크게 나타났고 높은 온도에서 적게 되었고 적온의 303K에서 I_{on}과 I_{off}는 고온의 383K에서 보다도 적게 되었다. 이는 고온에서의 활성화 전자의 활성화로 인하여 전류는 높게 되나 비정질 실리콘의 국부적인 상태결합으로 인한 활성화 전자의 전하중이 때문에 전류의 범위는 고온에서 적게 된다.

그림 8. 허스테리시스 턴-온 전류의 비교
Fig 8. Comparison of hysteresis turn-on current

그림 9. 턴-온과 턴-오프 전압의 비교
Fig 9. Comparison of turn-on and turn-off voltage

그림 10. 턴-온과 턴-오프 전류의 비교
Fig 10. Comparison of turn-on and turn-off current

그림 11. 허스테리시스 발생 온-오프 비
Fig 11. Hysteresis occurrence $I_{on}(on/off)$ ratio

TFT 허스테리시스 전류 $I_{on}(on/off)$ 비를 그림11 에 나타내는데 303K에서 높게 되고 383K에서 낮

4. 결론
본연구에서는 N-Type<100> Si 웨이퍼를 세이트로 한 Bottom 게이트 TFT를 제작 하여서 온도
외전성에 대해서 특성 측정하고 실험결과를 분석 하였다. 게이트전압이 증가하고 온도가 증가 함에 따라서 TFT 드레인 전류가 저항수적으로 증가 하였고 Vg와 온도가 감소 함에 따라서 드레인 전 유가 저항수적으로 감소 하였다. 이와같이 온도가 증가 함에 따라서 TFT 드레인 전류가 저항수적으로 변화 되어서 드레인 전류의 히스테리시스 현상은 온도에 크게 의존함을 나타내었다. 383K 이상의 고온에서 TFT의 순방향 히스테리시스 전류는 활성화 전류의 감소로 인하여 부상특성을 나타 내었으며, 303K 부터 383K 범위에서 역방향 전류는 TFT 전류폭적으로 인한 시간지연에 때문에 순방향 전류보다 턴온전압이 높고 턴오프 전압이 빠르게 되었다. 히스테리시스 발생 영역과 발생 전압은 고온으로 일정하게 되었으며, 순방향 턴온 전압은 온도가 증가함에 따라서 증가하였고 활성화 전자의 에너지가 역방향시 크게 변화하며 역방향 전압은 온도가 증가함에 따라서 비례적으로 증가하였으며 고온에서 순방향 전류의 차이는 더욱 크게 되었다. 히스테리시스 특성을 나타내는 전류 Ip(on/off) 비는 고온에서 낮았고 저온에서 높게 되었다. 온도가 증가함에 따라서 온드레인 전류는 점진적으로 증가하였고 온드레인 전류는 약간의 감소를 보여서 온도가 증가함에 따라서 Ip(on)과 Ip(off)사이의 편차가 적어지게 되는 특성을 보였으며 온도에 관련한 Ip(on/off) 비는 낮은 온도에서 크게 되었고 높은 온도에서 적지 되어서 전형 적인 특성과 같게 되었다.

* 본 연구는 서울대학교 반도체 공동연구소의 반도체연구 교육부 학술연구조사(95-E-1034)에 의해 수행 되었음.

참고 문헌

저자 소개

이니선

정학구

오금곤