Au/Te/Au n-GaAs 구조의 열처리 효과

The annealing effects of Au/Te/Au n-GaAs structure

정성훈*, 송복식*, 문동찬*, 김선태**
(Sung-Hoon Kim, Bok-Sik Song, Dong-Chan Moon, Sun-Tai Kim)

Abstract

The annealing effects of Au/Te/Au/n GaAs structure was investigated by using x-ray diffraction, scanning electron microscope, the specific contact resistance and I-V measurement. Increasing the annealing temperature, the intensity of Au-Ga peak by X-ray diffraction was increased. The Ga:Te peak got evident for the samples annealed at 400℃ and GaAs peak by recrystallization appeared for the samples annealed at 500℃. The variation from the schottky to low resistance contact was confirmed by I-V curve. The lowest value of the specific contact resistance of the samples annealed at 500℃ was 3.8×10^5Ω-cm^2 but the value increased above 600℃.

Key Words(중요용어) : Au/Te/Au/n-GaAs structure(Au/Te/Au/n-GaAs 구조), specific contact resistance(컨주얼접촉항), I-V curve(전류-저항곡선)

1. 서 론

최근 화합물 반도체를 사용한 고속전자 및
장치소자의 개발로 저지향성과 열적 안정성을
지닌 전극 접촉에 대한 관심이 높아지고 있다.
특히, 응성 접촉의 형성 과정에 대한 연구가
활발해지면서, 기존의 전통적인 응성 제조보다
는 특성소자나 기판에 대해 적절한 접촉특성을
을 실현시킬 수 있는 물질에 대해서도 구체적
인 연구가 진행되었다. 일반적으로 Au-Ge계
의 금속이 n형 GaAs 의 대표적인 저지향 접
촉물질로 알려져 있으나 Wang 등은 Pd가 포
합된 시스템과 GaAs와의 접촉특성에서 10^6
Ω-cm^2이하의 접촉저항값을 보고(1)하고 있으
며, Tanahashi 등은 NiSiW을 사용한 응성접
촉에 대해 보고(2)한 바 있다. 그 밖에도
In-Au(90:10), Au-Si(94:6), Au-Sn(90:10),
Au-Te(98:2)등이 있다.(3) 그러나 Au-Ge, Pd
계열의Au-Te계열 물질의 저지향접촉에 대
한 연구가 국내외에서 거의 이루어진 바가 없으
므로 본 연구에서는 합금형태가 아닌 단일층

의 Au와 Te을 적층한 후 열처리를 함으로써 n
형GaAs와의 접촉계면이 열처리에 따라
Schottky 접촉에서 저지향 접촉으로 변화하는
과정에서의 물성적인 변화를 조사함으로써
Au/Te계의 저지향 접촉요인을 규명하고 응용
가능성을 탐색해 보고자 하였다.

2. 실험 방법

2-1. 시편 제작

HCl:H2O(1:1)수용액으로 표면처리된 n-
GaAs 기판(Si doped, 1.2x10^{15}/cm^2)에 100Å
Au, 400Å Te, 1000Å Au로 10^{-6} Torr에서 연
속적으로 염증착하였다. 이와 같은 형태의 제품
은 Te이 0.33eV, GaAs와 결합시 생성되는
Ga:Te과 As:Te등이 모두 1.0eV이하의 낮은
에너지열을 지니고 있고 이 물질에 n형의
불순물이 첨가되면서 금속과 반도체의 계면에
서 저지향을 실현하는데에 기여할 수 있다는
것에 기인한다. 특히, schottky 접촉을 위해
기판과 Te 사이에 Au를 형성하였고, 기존의
Au-Te(98:2)의 저지향 물질조성에 충실하기
위해 Au에 의한 샘플위치 구조를 시도하였다.
열처리는 5 ℃/min의 Ar를 주입시키면서 3단
수평전기로에서 온도와 시간을 각각 200 ~ 600

* : 광운대학교 전자제조공학과 신기술연구소
** : 대전산업대학교
접수일자 : 1996년 2월 28일
심사완료 : 1996년 8월 14일
2-2. 측정 및 분석

n-GaAs기판위에 열 중합방법으로 형성된
Au/Te/Au 구조에 대해 X선 회절을 통한 혼
합을 분석하였다. 회절선에 의한 혼합물 및 방
향성은 결정 가능한 물질의 JCPDS cards의
면간거리값과 분석한 결과값을 비교하여 결정
하였다. 표면분석을 위해 전자 현미경을 사용하
였으며, 전기적 특성을 전도성측정, 전류-전
압곡선을 통해 분석하였다. 전류전압측정[44]
은 4점 검출법[55]에 의해 구하였다. 저항형
측정을 이용한 계면에서의 전자전도 R은 다음과
같다.

\[R = R_e + R_a + R_m + R_p \]

여기서, \(R_e \) 는 전저항, \(R_a \) 는 검측전 별
에서 발생하는 불균일 전류효과에 의한 저항, \(R_m \)
은 검측장의 저항성분, \(R_p \) 는 측정전에
의한 저항이다. 본 논문에서 구하고자 하는 전
류전압측정(specific contact resistance)은 \(R_e \)
와 다음과 같은 관계이다.

\[\rho_c = R_e A \]

여기서, \(A \) 는 검측점의 면적이다.

본 논문에서 사용한 4점 검측법은 전도성측
정 측정방법으로서 Terry 등에 의해 제안된
방법이다[8]. 그림2는 측정계통도를 나타낸 것이
다. 위 그림에서 시험은 4개의 검측점이 동간
격으로 일정한상에 위치한 장방형의 형태로
하하였다. 점검측점의 전원분배와 전류사용 방
식 검측점 간격보다 적정을 정한 적정 계측하
었는데, 본 실험에서는 적정 0.25mm, 간격 5.0
mm로 제작된 시험을 사용하였다. 환전류를
\(a-d \)와 \(b-d \)에 이용했을 때, \(b-c \)에서 측정된 각
각의 전압을 \(V_{bc} \) 로 표기하였다.

점 \(b \)에서의 전도성측정 \(\rho_c \) 는,

\[\rho_c = A R_e = A (R - R_m) = A \left(\frac{V_{bc}}{I_{bc}} - \frac{V_{bc}}{I_{ad}} \right) \]

점 \(b \)의 피저항계(spraying resistance)와 점 \(b \)
와 \(c \)사이의 피저항계 seriues resistance)을 고
려하고 측정에 의한 저항을 무시하면, 다음
과 같이 전도성측정 관계식을 단순화할 수
있다.
\[\rho_c = A(R - R_s - R_m) \]
\[= A\left[\frac{V_{bc}}{I_{bc}} - R_s - \frac{V_{bc}}{I_{ad}} \cdot \frac{\ln\left(\frac{4A}{d} - 1\right)}{2 \cdot \ln 2} \right] \]

이기사,

\[R_s = \frac{4\rho}{\pi d^2} \left\{ \frac{\sum_{m=0}^{\infty} \frac{y^m}{(2m!(2m+1))^2}}{\sum_{m=0}^{\infty} \frac{y^m}{(m+1)2^{2m}(m!)^2}} - 1 \right\} \]

\[y = \frac{\rho_d^2}{4\rho_{cw}} \quad (\rho: \text{ 반도체 기판의 비치량}) \]

3. 결과 및 고찰

그림 3과 4는 열처리온도에 따른 각 시간의 X선 회절도를 나타낸 것이다. 200℃ 시험에서는 주로 Ga:Al (111)면의 회절선을 볼 수 있으므로 Au와 Ga의 혼합물이 생성되기 시작하는

그림 4. Au/Te/Au/n-GaAs구조를 각각 400℃에서 (a) 2시간, (b) 4시간, 500℃에서 (c) 2시간, (d) 4시간동안 열처리시의 X선 회절도.

Fig. 4. X-ray profiles of Au/Te/Au/n-GaAs structure annealed at 400℃ for (a) 2hr, (b) 4hr and at 500℃ for (c) 2hr, (d) 4hr.

그림 3. Au/Te/Au/n-GaAs구조를 200℃에서 (a) 2시간, (b) 4시간, 300℃에서 (c) 2시간, (d) 4시간동안 열처리시의 X선 회절도.

Fig. 3. X-ray profiles of Au/Te/Au/n-GaAs structure annealed at 200℃ for (a) 2hr, (b) 4hr and at 300℃ for (c) 2hr, (d) 4hr.

그림에 의한 n-GaAs의 저차향성 접촉은 두 가지 형태에 의해 계면에서 전자수송이 이루어진다.

Te계에 의한 n-GaAs의 저차향성 접촉은 두 가지 형태에 의해 계면에서 전자수송이 이루어진다.

\[\text{Te계에 의한 n-GaAs의 저차향성 접촉은 두 가지 형태에 의해 계면에서 전자수송이 이루어진다.} \]

몇몇 경우 Te와 GaAs의 계면이 형성되어 이중은 높은 As 분재율 농도를 지니고 있으므로 Au금속과의 장벽이 낮아지게 되어 전도도가 증가하게 된다. 동쪽은 GaAs의 Te이 분재율로서 고농도로 첨가되어 형성된 계면이 존재하여 장벽이 감소함으로써 다편리에 의해 계면에서 전자수송이 이루어진다. 이러한 Te와 GaAs의 계면이 형성되어 이중은 높은 As 분재율 농도를 지니고 있으므로 Au금속과의 장벽이 낮아지게 되어 전도도가 증가하게 된다. 동쪽은 GaAs의 Te이 분재율로서 고농도로 첨가되어 형성된 계면이 존재하여 장벽이 감소함으로써 다편리에 의해 계면에서 전자수송이 이루어진다. 이러한 Te와 GaAs의 계면이 형성되어 이중은 높은 As 분재율 농도를 지니고 있으므로 Au금속과의 장벽이 낮아지게 되어 전도도가 증가하게 된다.
연구: Au/Te/Au/ n-GaAs 구조의...

사진 1. 2시간 열처리 온도에 따른 표면 특성
(a) 열처리 전 (b) 200℃ (c) 300℃
(d) 400℃ (e) 500℃ 및 (f) 600℃.

Photo. 1. The characteristics of the surface morphology at various annealing temperature for 2hr
(a) before annealing (b) 200℃
(c) 300℃ (d) 400℃ (e) 500℃ and (f) 600℃.

열처리하지 않은 시험의 경우, 평탄한 표면상태를 보여주고 있으나, 이미 400℃ 열처리후에
성형체의 Au-Ga 혼합들이 나타나기 시작하여
500℃에서는 표면에 응용 두터워져 나타났다.

1. X선 회절 결과에 의해, Ga: Au (111)면의
X선 회절강도가 열처리 온도와 비례관계에
있으므로 전자현미경에 의해 확인된 성형체의
Au와 Ga의 혼합율이 온도 증가에 따라 격정
화될 수 있다. 일반적으로 표면의 둔상은
접촉의 불안정을 유발하기 때문에 본 실험의

그림 5. 열처리 온도에 따른 접촉저항의 변
화. 각 점들은 동일한상에 원형이 놓인 4개의 산준저항의 평균값.

Fig. 5. Variation of the specific contact resistance with annealing temperature.
Each data point represents the average of 4sets of the collinear patterns formed of circular points.

10⁴Ω cm²의 값을 얻을 수 있었다. 500℃ 시
편의 경우, 접촉저항저항이 시편간에 최대
한 계단까지의 차이를 보였는데 이는 표면불
 양에 의한 접촉 불안정으로 인해 시편에 따라
계면에서의 전류 흐름에 차이가 생겼기 때문
이다. 600℃ 이상에서 열처리된 경우, 접촉 접
촉저항이 급격하게 증가하였는데 이는 기판
분해에 기인한 것으로 생각된다. 전류전압특성
을 통해 열처리에 따라 계면을 통한 전도의
변화를 보고자 하였다. 사전 2에서 300℃이하의
경우에 나타난 전류전압특성은 열전자 내소기
(Thermionic emission)에 의한 근속과 반도체
간의 전류현상을 보여준다. 400℃에서는 인가
전압에 대해 전류값이 증가하는데 이는 정벽
을 통한 전자수송이 증가함을 의미한다. 400℃
의 GaTe의 X선 회절강도의 증가와 접촉접
촉지향의 감소의 결과와 일치한다. 500℃의 조건, 저항해소성에 근접한 곡선을 보여주는데 이는 Te이 고농도로 첨가된 GaAs 중에 의해 장벽이 약아지면서 전자수송이 더욱 증가하기 때문인 것으로 사료된다.

400℃, 4시간의 조건, 선형적인 형태에 근접해 있음을 볼 수 있으며, 500℃에 비해 600℃의 특성곡선에서 저항값이 증가함을 확인할 수 있다.

사진 2. 4시간 열처리시 온도에 따른 Au/Te/Au/n-GaAs 접촉의 전류-전압 특성

Photo. 2. Current-Voltage characteristics of Au/Te/Au/n-GaAs contacts at various annealing temperature for 4hr (a) 200℃ (b) 300℃ (c) 400℃ (d) 500℃ (e) 600℃

4. 결론

n-GaAs(Si doped. 1.2x10^{18}/cm^3) 기판위에 Au/Te/Au를 은연착하여 Au/Te/Au/n-GaAs 구조의 시편을 제작하였다. x선 회절 분석 결과, 400℃와 500℃ 열처리한 시편의 경우 각각 Ga_{x}Te_{3} 회절선과 GaAs 회절선을 확인할 수 있었다. 전류접촉지향이 400℃ 열처리 이후에 감소하는 것으로 Ga_{x}Te_{3}, GaAs층은 금속과 반도체간의 전자수송과 관계가 있음을 알 수 있었다. 또한 400℃ 이하에서 열처리한 시편의 표면상태가 양호함을 알 수 있었다. 전류전압특성곡선에 의해 schottky접촉 특성을 보이다가 온도가 증가함에 따라 선형적인 특성으로 변화함으로써 저항해소성 접촉선상을 확인할 수 있었다. 이상의 결과에 의해, Au/Te/Au/n-GaAs 구조의 저항해소 접촉은 Ga_{x}Te_{3}층으로 낮아진 장벽으로의 전자수송 및 Te 분산물이 첨가되어 재성장된 GaAs층에 의해 두께가 감소한 장벽을 통해 터널링되어 이루어짐을 알 수 있었다.

참고문헌

8. LEWIS E. TERRY AND RICHARD W. WILSON, " Metallization System for Silicon Integrated Circuit", PROCEE-
DING OF THE IEEE, 57, 9, PP 1580-1586, 1969