A Study on the Removal of Cu Impurity on Si Substrate and Mechanism Using Remote Hydrogen Plasma

리모트 수소 플라즈마를 이용한 Si 기판 위의 Cu 불순물 제거

  • Lee, Jong-Mu (Department of Metallurgical Engineering, Inha University) ;
  • Jeon, Hyeong-Tak (Dept. of Metallurgical Eng. of Hanyang Univ. Seoul) ;
  • Park, Myeong-Gu (Department of Metallurgical Engineering, Inha University) ;
  • An, Tae-Hang (Dept. of Metallurgical Eng. of Hanyang Univ. Seoul)
  • Published : 1996.08.01

Abstract

Removal of Cu impurities on Si substrates using remote H-plasma was investigated. Si substrates were intentionally contaminated by 1ppm ${CuCI}_{2}$, standard chemical solution. To determine the optimal process condition, remote H-plasma cleaning was conducted varying the parameters of rf power, cleaning time and remoteness(the distance between the center of plasma and the surface of Si substrate). After remote H-plasma cleaning was conducted, Si surfaces were analysed by TXRF(total x-ray reflection fluorescence) and AFM(atomic force microscope). The concentration of Cu impurity was reduced by more than a factor of 10 and its RMS roughness was improved by more than 30% after remote H-plasma cleaning. TXRF analysis results show that remote H-plasma cleaning is effective in eliminating Cu impurity on Si surface when it is performed under the optimal process condition. AFM analysis results also verifies that remote H-plasma cleaning makes no damage to the Si surface. The deposition mechanism of Cu impurity may be explained by the redox potential(oxidation-reduction reaction potential) theory. Based on the XPS analysis results we could draw a conclusion that Cu impurities on the Si substrate are removed together with the oxide by a "lift-off" mechanism when the chemical oxide( which forms when Cu ions are adsorbed on the Si surface) is etched off by reactive hydrogen atoms.gen atoms.

리모트 수소 플라즈마를 이용하여 Si 기판 위의 구리 오염의 제거 효과에 관하여 조사하였다. 최적의 공정 조건을 찾기 위하여 Si 기판을 1ppm ${CuCI}_{2}$ 표준 화학 용액으로 인위적으로 오염시킨 후 rf power와 세정시간, 거리 (수소플라즈마 중심에서 Si 기판표면까지의 거리)등의 공정 변수를 변화시키며 리모트 수소 플라즈마 세정을 실시하였다. 리모트 수소 플라즈마 세정 후 Si 표면의 분석을 위하여 TXRF(total x-ray reflection fluorescence)와 AFM(atomic force microscope)측정을 실시하였다. 리모트 수소 플라즈마 세정이 Cu의 제거에 효과적이며 Si 표면의 거칠기에 나쁜 영향을 주지 않음을 TXRF와 AFM 분석결과로부터 알 수 있었다. Cu 불순물의 흡착 메커니즘은 산화 환원 전위 이론으로 설명될 수 있으며, Cu 불순물의 제거 메커니즘은 XPS(x-ray photoelectron spectroscopy)분석결과를 근거로 하여 다음과 같이 설명할 수 있다. :먼저 Cu 이온이 Si 표면에 흡착되어 화학적 산화막을 생성한다. 그 다음, 수소 플라즈마 중의 반응성이 강한 수소이온이 이 산화막을 분해시켜 제거하며 Cu 불순물은 산화막이 제거될 때 함께 제거된다.

Keywords

References

  1. Plasma Technology For ULSI Process
  2. Semiconductor Integrated Circuit Processing Technology W. R. Runyan;K. E. Bean
  3. Handbook of Semiconductor Wafer Cleaning Technology W. Kern
  4. Progress im Semiconductor Fabrication Technical Conference SEMICON Europe 92 S. Verhaverbeke;P. W. Mertens;M. Meuris;M. M. Heyns;A. Schnegg;A. Philipossian
  5. J. Electrochem. Soc. v.139 no.11 T. Ohmi;T. Imaoka;I. Sugiyama;T. Kenzuka
  6. J. Electrochem. Soc. v.142 no.4 J. A. Sees;L. H. Hall
  7. Metal Impurities in Silicon-Device Favrication K. Graff
  8. Microcontamination v.27 no.September/October formely of Ashland Chemical H. F. Schmit;M. Meuris;P. W. Mertens;S. Verhaverbeke;M. M. Heyns;IMEC;K. Dellenbeck
  9. J. Vac. Sci. Technol. v.B12 no.5 C. W. Nam;S. Ashok
  10. Surface Science The First Thirty Years v.299/300 J. Lagowski;Chales B. Duke(ed.);Webster N.Y.(ed.)
  11. 한국재료학회지 v.5 no.2 박기철;김기범
  12. J. Electrochem. Soc. v.134 no.1031 G. Gould;E. A. Irene
  13. Proc. the Third IUMRS Intermational Conference in Asia v.2 t. H. Ahn;M. G. Park;K. Ryoo;C. Lee;H. Jeon;S. W. Kim(ed.);S. J. Park(ed.)
  14. J. Electrochem. Soc. v.141 no.10 H. Morinaga;M. Suyam;T. Ohmi
  15. J. Electrochem. Soc. v.48 no.907 J. C. Bean;G. E. Baker;P. M. Petroff;T. E. Seidel
  16. J. Electrochem. Soc. v.131 no.2924 G. Ghidini;F. W. Smith
  17. The Electrochem. Soc. Proc. First intern. Symp. on Cleaning Technol. in Semicond. Dev. Manufacturing T. Ito;R. Sugino;S. Watanabe;Y. Nara;Y. Sato;J. Ruzyllo(ed.);R. Novak(ed.)
  18. J. Electrochem. Soc. v.137 no.10 S. Hossain;C. Pantano;J. Ruzyllo
  19. Glow Discharge Process B. Chapman
  20. J. Appl. Phys. v.71 no.2 M. Delfino;S. Salimian;D. Hodul;A. Ellingboe;W. Tsai
  21. J. Vac. Sci. Technol. v.A11 no.5 W. Tsai;M. Delfino;M. E. Day;T. Sheng;B. C. Chung;S. Salimian
  22. Hanadbook of plasma processing technology S. M. Rossnagel;J. J. Cuomo;W. D. Westwood