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Abstract

In this paper we propose an efficient scoring type one-step GM-
estimator, which has a bounded influence function and a high break-
down point. The main point of the estimator is in the weighting scheme
of the GM-estimator. The weight function we used depends on both
leverage points and residuals. So we construct an estimator which
does not downweight good leverage points. Under some regularity
conditions, we compute the finite-sample breakdown point and prove
asymptotic normality. Some simulation results are also presented.
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1. MODEL AND MOTIVATION
We consider the linear regression model
=X B4¢., i=1,2,--,n, (1.1)

where {(x;,y:) 1t =1,2,---,n} is a sequence of independent and identically
distributed (iid) random variables with distribution function F(x,y), x; is a
p x 1 random vector, and  is a p X 1 vector of unknown parameters. While,
€;’s are iid, independent of x; and symmetric about 0 with scale parameter o.

It is well known that the classical LS estimator is very sensitive to influ-
ential observations. On the other hand, the Huber’s M-estimator is robust
to outliers in y-direction, but still susceptible to leverage points, especially to
bad leverage points.

In general, the GM-estimator of 3 for the regression model (1.1) is defined
implicitly by the solution of the equation

n T
Zn (xi, w) x; = 0, (1.2)
=1 g

where n : R? x  — R.

It is well known that the GM-estimators have bounded influence func-
tions. However, the breakdown points of GM-estimators are at most 1/p
(see Maronna, Bustos and Yohai, 1979, or Simpson, Ruppert and Carroll,
1992). Thus, in a multiple regression model with several explanatory vari-
ables, the breakdown points of the GM-estimators are significantly low, which
are viewed as a serious deficiency of the GM-estimators.

To overcome this deficiency of GM-estimators, Simpson et al. (1992) and
Coakley and Hettmansperger (1993) suggested to use one-step GM-estimators
with high breakdown initial estimates. The main point is that the one-step
GM-estimators inherit the breakdown points of the initial estimates.

Simpson et al. (1992) proposed the one-step Mallows-type GM-estimators
with n-function of the form

n(x,r/o) = w(x)y(r/o),

where r = y — xT 3. Note that this Mallows type downweights the leverage
points regardless of the contribution to the model of these points. Thus, some
good leverage points are inevitably downweighted.

The one-step GM-estimators proposed by Coakley and Hettmansperger
(1993) are based on the Schweppe-type n-function, which is of the form

n(x,r/o) = w(x)(r/ocw(x)).
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This Schweppe type is designed to downweight the leverage point only if the
corresponding residual is large.

We propose a weight function which depends on both residuals and lever-
age points simultaneously. This weighting scheme severely downweights the
bad leverage points, but seldom downweights the good leverage points. That
is, we do not assent to suppress leverage points blindly.
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Under some regularity conditions, the proposed GM-estimator has a bounded

influence function and a high breakdown point.

2. THE PROPOSED ONE-STEP GM-ESTIMATOR

Note that both the Mallows-type and the Schweppe-type GM-estimators
adopt the weights which depend only on the design points x’s. There is no
device to distinguish “good” leverage points from “bad” leverage points in
the weights. In the Schweppe-type n-function, the residuals are adjusted by
weights to avoid downweighting “good” leverage points. But according to our
simulation study, some leverage points with moderately small residuals are
also significantly downweighted.

To remedy this defect we suggest to use the Schweppe-type n-function with
weights which depend on both the residuals and the design points. Thus, the
n-function is of the form

n(x,r):w(x,r)¢( r ) (2.1)

w(x,r)

or, by using scaled residuals,
T r T
7 (X’ ;> v (x, ;> 4 (aw (x,r/a)) ’

w (x, g) — min (1, wsign(r)) . (2.2)

Here, a is a tuning constant and v(x) is a measure of leverageness defined as
follows (see Simpson et al. 1992):

where

1/2
v(x) = min [1’ {(z - mz)TCbz‘l(z —~ mz)} ]’
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where z is a (p—1) x 1 vector of predictor variables such that x” = (1,2z7), and
m; and C, are the minimum volume ellipsoid(MVE) estimates of location
and covariance of {z}, respectively, and b is the (1 — +) quantile of the chi-
squared distribution with p — 1 degrees of freedom (v = 0.05 or 0.025). Note
that ||v(x)x]|| is bounded as a function of x.

The proposed weights are inversely propotional to the absolute values
of residuals and to the distance between the design point and the center
of the design points. However, good leverage points are not supposed to
be downweighted, if the corresponding residuals obtained from some initial
fitting are small enough. This fact also implies that we have to use some
robust procedures to obtain initial fitting.

Using the proposed n-function and weights, the corresponding GM-estimator
is a solution of the simultaneous equations

is T2 g 7"1'(5) X, =
w(xi,ri(B)/o)b (Gw(xi,ri(ﬁ)/UJ ;=0. (2.3)

Let 3, be an initial estimate of 3 such as the least trimmed squares(LTS) esti-
mate, which was proposed by Rousseeuw (1984). Then the proposed scoring
type one-step estimator based on [y 1s given by

n

1

1

B = Bo-f-aoHo-lgo, (2.4)
where B
go = Zn(xiyrz(BO)/OO)xz
=1
and ~
- - 1> )
Ho=XTAX , A=diag (— > on'(xi, T];ﬂo))) . (2.5)
n j=1 0

Here, X is the n X p matrix having rows xT n'(x,r) = dn(x,r)/dr, Gy =
1.4826 x MAD{r;(fo)}, the abbreviation M AD stands for median absolute

deviation, and

! (Xi’ E(;—O_)> = w(x;, 7i(B0)/Fo)¥ ( ril o) ) .

0 Gow(x;,7i(Bo)/5o)

We consider only the scoring type one-step estimator because, according to
our simulation study, the Newton-Raphson version of the estimator has larger
fluctuation in the correction amounts to the initial value, and consequently
becomes unstable and less efficient than the scoring type.
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3. PROPERTIES OF THE PROPOSED ESTIMATOR

In this section we invé's:t‘igate some\‘pfop‘ert\'ies of the proposed one-step
GMe-estimator given by (2.4). Our concerns are focused on: (1) boundedness: =
of the influence functign in both z-and y directions, (2) high'breakdown point,
and (3) asymptotic normallty of the proposed estlmator We use the fOHOng N
assum‘ptlons in Theoreri 142" RN ,'_ AR A i

Lk P T S T S T D SRS R AT VIR SR LIS TRE SR PR REEE
(Cl) The imitial- eﬁtlmato;rvﬁg haIs an inﬂuence fumctlon 1F(%; y ﬁb) Lo

\4»!1 ‘!.

(C2) ¥ ) is- boun,ded ﬁ(g{, ) is an ©dd function, ofir, and,ay(x, ) 2 0.for, aﬂl
SXER and v € RT.

. i ’4
TR ENSTSTIE I B VR0 B R G AL adnddpr et sy

(0‘3) Wlthout loss of generahty, the fitst | D observatlons are ﬂmcontamma,ted

¥ AR R T M
"and %,V %, are Tlinearly 1ndependent o S
P T ?';'~:'¢;" Ly /‘g\“*'-‘ ,r;‘, ,[1;"',;".
(C4) Assume that, for all ¢ =1k ymyet o2 Wiy e g wn
Ciy Y b Ry ".“/"‘\‘ ST
{ G AN g T Y
>0 (xi,7(5o))
) =1 - . . YR ]
B ‘:"‘; i lJ) Grts L Oy IR R N R "'ig‘ii’ 1 i )' iyt ~"J.j§“, et

are posmve at least for the firstsp: observatiOms -and fmonmegatwe {for thesi ¥
other observations.

Do ) L -
AR | h‘,, ¥R AR

(C5) (1/n)Hy N D, Where Disa posmve deﬁmte p X p matrlx

1

[ R
J ( [RIREIA] s FERFIED LOrTrER

(Cs6) (l/n)(XTVX) LN E “where ¥/ is tﬁe dlaéonal matrlx Wlth 'dlagonal
elements n2(x;, ri(Bo)/30), 1=\ Ly T and E.is a positive deﬁmte p xPp..

-t SR

matrix. L “ .
(C7) maxi,; |$ij‘ = 0,(n 1/2) for dll s =T, n} jxé‘_?_\x]i,‘;bw’vp.:%
(Cé) Ry A 0 “ il/?) o
(09) Go = U+Op(n‘1/2)"""

1;5 "‘v‘\'iry'/’ "“L

T S RSN TP BTN E B RTNT PR

First, we derive the influence function of the pfopoéed'estimdtof | For -
simplicity, let ¢ = 1, and for any - distribution functlon F of (x,y) let 3;(F)
and ﬁO(F) denote the functionals correspondmg to the proposed one-step
estimator in (2.4) and the initial estimator; respectively. Then 4 (£} can be: !
written as follows:

BEYE BOR) 4 Ly
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where
9(F) = Er [n(x,y — " Bo(F))x]

and

H(F) = Eps [Epa: [1/(x,y - x" Bo( F))] xxT] .

Here F* and F¥* mean the marginal distribution of x and the conditional
distribution of y given x, respectively. Note that 3 = Bi(Fy), Bo = Bo(F),
90 = ng(F,) and Hy = nH(F,), where F, is the empirical distribution func-
tion of {(x;,v:)}.

To obtain the influence function of the proposed estimator B(F), let Fy be
the distribution function of the target model satisfying the assumptions in the
model (1.1) and F, be the t-contamination of Fy, i.e., F, = (1 —t)Fo + t6x 4,
where 8y, denotes the pointmass 1 at (x,y). Note that, under the target
model F(), ﬂ](F()) = ,Bo(F()) = ,8, i.e., g(FO) =0.

Now, replace F' by F; in $;(F), then we have

Bi(E) = Bo(Fy) + {H(F})} g(F). (3.1)

And differentiate both sides of (3.1) with respect to ¢ and replace ¢ by 0.
Then, under the assumption (C1), we have

IF(x,y;8) = 1F(x,y; Bo) + [H(Fo)] " IF(x,y; ) (3.2)
Here, the influence function of g(F) can be obtained as follows.

IF(x,9:0) = lim 2E) —9(0) _ . g(F)
t10 1 m—

= E5:|:,y_F0 [n(u, v — uTﬁo(Fg))uJ
~Ep, [n'(u,v — o7 By Fy))uuT| IF(x,y; )
= n(x,y —xTB)x — [H(F)IF(x,y; Bo). (3.3)
By inserting (3.3) into (3.2), we have
IF(x,y; 8) = [H(Fo)] 'n(x,y — x B)x. (3.4)

Thus, if we choose a 1-function so that

’ \xH<oo

It il = [l (=
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as ||x|| or |r| goes to infinity, then the proposed estimator has a bounded
influence function.

Next, we consider the finite-sample breakdown point of the proposed esti-
mator. Let Z,, = {(x1,¥1), -, (Xn,yn)} be any sample of n data points, and
T be an estimator of the regression parameter such that 7'(Z,) = 8. Denote
by B(m;T, Z,) the maximum bias that can be caused by the contaminated
data points Z*, where Z is obtained by replacing any m of the original data
points Z, by arbitrary values. That is,

where the supremum is taken over all possible Z*. Then, the finite-sample
breakdown point of the estimator T(Z,,) is defined as

ex(T, Z,) = max { d ; B(m; T, Z,) < o0 }
n

That is, €} is the maximum fraction of outliers that can be allowed in a given
sample without spoiling the estimator completely.

We now present a theorem which computes the breakdown point of the
proposed estimator. The proof of the theorem is given in Appendix.

Theorem 1. Under the assumptions (C2) through (C4), the proposed one-
step estimator has a breakdown point of ([n/2] — p + 1)/n.

Finally we derive the asymptotic distribution of the proposed estimator
under some regularity conditions. Bickel (1975) derived the asymptotic distri-
bution of the one-step M-estimator in the linear model. Maronna and Yohai
(1981) discussed the asymptotic behavior of GM-estimators with random
carriers assuming general regularity conditions. For the one-step Schweppe-
type GM-estimator, the asymptotic normality is described in Coakley and
Hettmansperger (1993). Our proof in Appendix is based on Bickel (1975)
and Coakley and Hettmansperger (1993).

Theorem 2. Under the assumptions (C2) and (C5) through (C9),

Va(B - B) -5 N(0,0%%),
where ¥ = D 'ED™! with

T
D:/n’ <x7y—x ﬂ) xxTdF(x,y)

o
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and .
E = /772 <x, y_—x_ﬂ) xxTdF(x,y).

o
Proof. The proof is given in Appendix.

For inferences about [, the asymptotic variance of \/h—ﬁ, nVar(E) =
oD 'ED™! can be estimated as follows:

nVar(§) =52 D'ED™. (3.5)
Here, D and E are computed as follows (see Marazzi 1993, p. 145):

D=LxTix), B=21(xTVx)
n

n

where V = diag(35-y n*(xi, rj(ﬁo)/ﬁo)/n).

4. SOME MONTE CARLO RESULTS

In this section we want to compare the proposed estimator with the well-
known estimators such as the LS, LTS, LMS, Huber-M, Mallows-type GM,
and Schweppe-type GM, where LMS is the least median of squares estimator
proposed by Rousseeuw (1984). To perform a Monte Carlo study we set up
the following four situations:

Case 1) No leverage points and no outliers.
Case 2) No leverage points but with some outliers.
Case 3) Some bad leverage points.

Case 4) Some bad leverage points and some good leverage points.

The simulation model is
Yi=Bo+ Biza + fexin + Paxiz+ €, i=1,--- n. (4.1)

The regression parameters are set as 3y = f; = 2 = 3 = 1 for simplicity.
The number of observations is n = 30, and the number of replications is 500.
The explanatory variables and error terms are generated as follows.

For Case 1, the explanatory variables z;;’s are independently generated
from the normal distribution N(0,32%), for i = 1,---,30 and j = 1,2, 3. These
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explanatory variables are fixed in Case | and Case 2. The error term ¢;’s are
independently generated from the standard normal N(0,1), and these errors
are newly generated in each replication.

For Case 2, we use the same z;;’s as in Case 1. But, the ¢;’s are generated
from the contaminated normal. The distribution function of e-contaminated
normal(CN(e, o)) is given by

F(e) = (1 —e)®(e) + e®(e/ o),

and ¢ = 0.2 and ¢ = 5 are used in our Monte Carlo study. We expect that
some mild or extreme outliers are generated from this distribution comparing
to N(0,1) of Case 1.

For Case 3, first we generate z;;’s from N(0,3?%) and ¢’s from N(0,1).
Then we obtain y;’s according to (4.1). Next, to make some bad leverage
points, we select 6 points randomly, and replace these (x;,3:) by (x; + 9, ;).

In Case 4, we need some “bad” and some “good” leverage points. We
first generate z;;’s from N(0,1) and replace 6(20%) randomly selected x; by
x;+30. Next, we generate ¢;’s from N(0, 1) and obtain y;’s according to (4.1).
Thus, we have 6 good leverage points. To make some bad leverage points, we
replace 3(10%) randomly selected points (X;,y;) from remaining observations
not selected in good leverage points by (x;,y;). The latter 3 points must be
bad leverage points.

Note that in Case 3 and Case 4, z;;’s are newly generated in each replica-
tion according to these schemes. And, the above four situations are described
in Figure 1 in the framework of simple regression.

We compared 7 estimators in our simulation study, and the results are
summarized in Table 1. In the table we use the following abbreviations:

LSE : Least squares estimators

LMS : LMS estimators

LTS : LTS estimators

HME : Huber’s M-estimators

PRE : Proposed one-step GM-estimators
SCF : Schweppe-type one-step GM-estimators

MAL : Mallows-type one-step GM-estimators
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Figure 1. Examples of Simulated Data with 50 Points

We use the Huber’s v-function with the tuning constant ¢ = 1.5, for the
M- and GM-estimators. The one-step M- and GM-estimators are obtained
by the scoring method. In the proposed estimator, the tuning constant a =
6.0 is applied to compute weights. The constant ¢ = 6.0 is chosen as a
reasonable value through a simulation study in various situations. Note that
in Case 1 and Case 2 wv(x;) = 1, for all : = 1,---.50. Therefore, in these
cases, the estimates SCF, MAL and HME are all identical. In the measure
of leverageness v(x;), we used the tuning constant b = X3 0.075 for three types
of GM-estimators. All computations in this Monte Carlo simulation were
carried out on SUN SPARC10 AXIL311 by using S-PLUS (Ver.3.1: Release
for SUN SPARC). The LTS and MVE estimates were obtained by S-PLUS
functions ltsreg and cov.muve respectively. Also the S-PLUS function rnorm
and runif were used to generate normal and contaminated normal random
variates.
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Table 1. Empirical MEAN and MSE

481

o~ o~ o~

Est. Bo B1 B2 B3 Est.  Bo B1 B2 Ba
Case 1 : No leverage points , ¢ ~ N(0,1) Case 2 : No leverage points , ¢ ~ C'N(0.2,5)
Empirical Mean Empirical Mean
LSE 0.98491 0.99985  0.99990 1.00318 LSE 1.00676 1.00443 1.00613  0.99150
LMS 0.96694 1.00544 0.99276 1.00448 LMS 1.01267 1.00675 1.00335 0.99262
LTS 0.98052 1.00164 0.99508 1.00263 LTS 1.02778 1.01227 1.00387 0.99343
HMS 0.98357 0.99902 0.99914 1.00411 HME 1.01289 1.00857 1.00065 0.99292
PRE 0.98343 0.99899  0.99906 1.00423 PRE 1.01347 1.00843 1.00036  0.99286
Empirical MSE Empirical MSE
LSE 0.03785 0.00430 0.00333 0.00289 LSE 0.25144 0.02976 0.02558 0.02536
LMS 0.15056 0.01733 0.01219 0.01347 LMS 0.21048 0.02463 0.01782 0.02019
LTS 0.15753 0.01976 0.01217 0.01309 LTS 0.20698 0.02450 0.01702 0.01967
HME 0.04386 0.00604 0.00419 0.00422 HME 0.09404 0.01106 0.00824 0.00906
PRE 0.04407 0.00609 0.00422 0.00428 PRE 0.09357 0.01088 0.00814 0.00903
Case 3 : 6 Bad Leverage Points Case 4 : Bad & 6 Good Leverage Points
Empirical Mean Empirical Mean
LSE 0.06845 0.17441 0.18995 0.18876 LSE 0.24803  0.45710  0.43255 0.41657
LMS 1.00556 1.00189 0.99153 1.00574 LMS 0.98901 0.99621 1.00057  1.00329
LTS 1.01285 1.00265 0.99256 0.99958 LTS 0.97735 0.99966 1.00045 0.99806
HME 0.89617 0.92286 0.91850 0.92107 HME 0.92151 0.94314 0.95018 0.94261
PRE 0.96629  0.98860 0.98262 0.98575 PRE 0.97469  0.98364 0.99247  0.98479
SCF 0.91972 0.94952  0.94503  0.94783 SCF 0.93009 0.95369 0.96173 0.95301
MAL 0.90619 0.92765 0.92397 0.92517 MAL 0.92703  0.94392 0.95140  0.94409
Empirical MSE Empirical MSE
LSE 1.82701 0.76114 0.73969  0.73236 LSE 1.25474  0.51278  0.50651 0.54380
LMS 0.18369 0.02265 0.02556 0.02215 LMS 0.19005 0.01677 0.02893  0.02049
LTS 0.18971 0.02098  0.02165 0.03233 LTS 0.17781 0.01516  0.02867 0.01844
HME  0.08661 0.01920  0.02203 0.02420 HME  0.10911 0.01354 0.01789  0.01335
PRE 0.07072 0.01296  0.01508 0.01746 PRE 0.09603 0.00846 0.01412  0.00799
SCF 0.07984 0.01569  0.01799 0.02025 SCF 0.10739  0.01232 0.01655 0.01176
MAL 0.08392 0.01777  0.02036 0.02250 MAL 0.10774 0.01300 0.01719 0.01279

According to the simulation results in Table 1, the LSE has best perfor-
mances in both empirical mean and MSE in Case 1, as expected. However,
the LSE 1s easily broken in other cases, especially in Case 3 or 4. The results
obtained by the high breakdown estimates(LTS and LMS) are very similar.
But these estimates have high MSE, and the efficiencies of these estimates are

The minimum MSE in each column is underlined.
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very low comparing with other robust estimates. In Case 3 and Case 4, SCF
and MAL are only slightly better than the Huber’s M-estimate and these two
estimates have similar performances.

The proposed estimates (PRE) dominates the others in MSE except for
Case 1. And, we can conclude that in general the proposed estimate PRE
has better performances in MSE than other competitors under heavy-tailed
error distributions or in the presence of leverage points.

APPENDIX

Proof of Theorem 1.

Assume that m (p < m < [n/2] — p+ 1) points are replaced by arbitrary
values. Then, to prove that the proposed one-step estimator 3 has a break-
down point of ([n/2] — p+ 1)/n, we have only to show that ||Hy 'go|| remains
bounded, because

1811 < 1Boll + 3ol | Hg " 9ol

and the initial (LTS) estimator B, has a breakdown point of ([(n — p)/2])/n
which is greater than or equal to ([n/2] — p + 1)/n. Also note that the scale
estimator &y has a breakdown point of [(n — 1)/2]/n. That is, ||Go|| and o
remain bounded with m contaminated points. Now if A,.;,(Ho) is positive,
we have

H—l < HgoH
H 0 gO” — /\mm(Ho)’

where A,.in(Hop) is the minimum eigenvalue of Hy. Note that the MVE esti-
mators my and Cy have a breakdown point of ([n/2] — p + 2)/n. And, we

have R ~
looll = | 37 (x Sﬂ")) | <3| (x—@) < @

i=1 00 R Og
Here, ||7(x;,7m:i/00)%:|| = [Jw(x;,7:/00)%;|||¥:] < oo, since 1; is bounded and
llw(xi, 7:/00)%:|| is bounded unless r; = 0. However ; = 0 when r; = 0.

Therefore, the right side of (A.1) remains bounded as |r;| or ||x;|| goes to
infinity.

Thus, it is enough to show that A,.;.(Hy) is positive. For this, first note
the following inequality:

)‘min(P + Q) Z Amzn(P) + )‘mz’n(Q)' (A2)
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If Q is a positive semidefinite matrix, then Amin(P + @) > )\mm(P) We
can apply the inequality (A 2) in the following with P = TP dxix?, Q =
S e dixix] and di = o0 '(%4,7;(Bo)/0)/n. That is,

/\min(HO) - Amin {Edzxzx?}
= mm{}:dxx +de1 }
i=p+1
> Amin {Z dixixiT}
=1
- T
> Lr?lnp{d }] min {; X;X; }

> 0,
because the first p d;’s are positive and other d;’s are nonnegative by (C4).

Moreover, Amin(X %, X;xT) > 0 by (C3). Hence the theorem follows.

Proof of Theorem 2. Without loss of generality, let 5 = 0, so ¢ = y;. Note
that this is possible since the one-step estimator 3 is obtained only through
residuals, so the proposed estimator is regression equivariant.

To prove the theorem, first consider the following fact which stems from
Proposition 4.1 in Bickel (1975).

Under the assumptions (C2) and (C5) through (C9),

p n
sup {n”V2 Zxk (i, ma(t)) =7 (o6, )]+ (D2 &5 2w (% )z
=1

=1

max |t;] < M - —1/2} 2,0 (A3)

1<5<p
for each k = 1,2,---,p.

Since By = 0,(n=1/?) by (C8), we can apply t; = Boj - B = Boj, J
1,---,pto (A.3). In (A.3) n'(xi, &) can be replaced by En'(x;, €;)] because

r n
n~/? STt I (% &) — Eln'(x, )| zzi; = 0p(1).
7=1 i=1

Here, the expectation E is taken over the error, and by assumption (C5) we
can substltlte this expectation by d;, where d; = 3""_; 7 (xl,r](ﬂo)/ao)/n
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Oim [77 (xi, ri(5o)
i=1

Thus, we have

r n
sup {n 1/2 ) ) - (Xi, ;)] + Zﬂoj Zdﬂikl‘i]’
1=1 =1

Now, the estimator given in (2.4) can be rewritten as

5o i . (Xi, T'i(ﬁO))

}—Lo.

(A.4)

=1

P =N n

= = Z(ﬁj — Boj) Zdiiﬁikxij, (A.5)
0 J=1 i=1

for each k =1,2,---

, p- Thus, using (A.5), (A.4) can be reduced as follows.
= ri(f i S
"Zl“ik [77 <Xi, Sﬁﬂ)) -7 <Xi, 6—)} + Zﬁj [Zdixikxij]
i=1 To 4 =1 i=1

—a'o inkﬂ (Xi) rigﬁo)> —p_) 0
=1 0o

Note that 69 = 0 + O,(n~1/2) by (C9). Therefore, we have

r - T
nTNT B d;
1=1 =1

n-1/2

TipgZiy — O'E TN (Xi, &) -—L 0.
i=1 g
That is, in matrix representation with W(e/ow) = (3(¢e;/ow,), - - - s (en/ow, )T

and W = diag(w;). Here, for simplicity, we denote w(x;,:(50)/3o) and
w(X;, €;/0) by @; and w;, respectively.

P

V2 [HOB — o XTW <i) ]

— 0. (A.6)
ow
Since Ho/n converges in probability to D by (C5),
n V2 (Hofn)! [HOB — e XTWW (—6—)] 2,0
ow
Thus, we have
n!/? [B B HI'XTWW (i> ] 7,0 (A7)
ow
By assumption (C5), (A.7) implies that
n1/2[3_ﬁ] é

- € d
V2o Ho X TW O <—> 4

ow
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d . . e
where = means asymptotic equivalence in distribution.

Thus, to prove the theorem we have only to show that

R V2 XTW (é) 4, N(O, E [wZ(x, ¢/o) ;bz(m)xxT} )

To show this, we apply the Cramér-Wold device (Serfling 1980, p. 18) and
Theorem 10.9 (Lindeberg-Feller central limit theorem) of Arnold (1981, p. 156)
to the n~2XTWW. Here, note that the MVE estimators m, and C used
in the weight w(x;,¢) can be replaced by the mean vector and covariance
matrix of z, respectively, since the MVE estimators are consistent. There-
fore, we may treat w(x;, €;)’s as independent random variables. Now to apply

the Cramér-Wold device, consider the following linear combination. For any
s € R?,

12T XTWY = Zn_1/2§31 w(xy, €/ )59 (m)

where a,; = n‘l/zw(x,-,ei/a)w(ei/aw(xi,ei/a)) sTx;. Note that a,;’s are in-
dependent. To check the Lindeberg’s conditions, we compute the variance of
an; as follows.

ot = Var(an)
= E[Var(a.|X)]+ Var[E(am| X))
= %STE[E (w"’(x,-, &/ o)p? (—6———)> x;xT

ow(x;, €/0

= %STE[wz(Xnﬁi/UWZ <—L—) xix?]s,

ow(x;, €/0)

X)}s

since in the model (1.1) we assumed that the distribution of ¢; is symmetric
about 0, ¢ and x; are independent and w(x;,€;/o)(e;/ow(X, €;/0)) is an
odd function of ¢;. Thus by (C7), lim, . maxi<i<n 02; = 0 and

nt

22:;03”- = 7B u?(x, ¢/ 0)0? (———)> xxTs.

ocw(x,efo
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Finally, for arbitrary positive é

C. = / 2 dF(x;, i
> R ACRD

i=1

1 n
= — E / sTetaz(xi,ei/or)x.ixiTs dF(x;,y;)
n 27 Ylanil>6

= sTEn(x, /o) xxT1(|an]| > 6)]s

1

as n goes to infinity, since lim,_.. Pr(|am| > é§) = 0. Thus, from (A.8)

oD N(0,E).

Hence the theorem follows.
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