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Bounds for the Full Level Probabilities with
Restricted Weights and Their Applications
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Abstract

Lower bounds for the full level probabilities are derived under order
restrictions in weights. Discussions are made on typical isotonic cones
such as linear order, simple tree order, and unimodal order cones. We
also discuss applications of these results for constructing conditional
likelihood ratio tests for ordered hypotheses in a contingency table. A
real data set on torus mandibularis will be analyzed for illustrating the
testing procedure.
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1. INTRODUCTION

Orthant probability is a very important concept in the area of one-sided
tests in multivariate probability models. This probability is defined as P[X &
O] where X is a random vector following Ny(u,W=1) and O = {x € R* :
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1 20, 25 20,---, 2, > 0}. There is a vast literature on the computation of
orthant probabilities: see Gupta(1963), Sun(1988), Kepner et al.(1989), and
Nomakuchi and Shi(1992). Even though orthant probabilities are expressed
in closed forms for very particular structures of W=1, it is generally the case
that no closed expressions are known to us unless k¥ < 4. Another concept
related with orthant probability is level probability which appears in chi-bar-
square distributions. We begin with discussions on some preliminary concepts
and results regarding level probabilities.

Consider a subset C of Euclidian space R* generated by all possible iso-
tonic functions with respect to a partial order < on indexset A" = {1,2,--- k}.
The set C is called an isotonic cone associated with partial order < on N.
Typical examples of isotonic cones are simple linear order, simple tree order,
and unimodal order cones which are of types {x e R¥ 1 z; <z, <--- < Tk},
{(xeRF: 2y < 5,5 =2,3,--,k},and {x e RF: 2z, < - <z, > - > zr},
respectively. Let X follow Ni(u, W) where W = diag{w;,w,, -, w} is
known. Then, the unrestricted maximum likelihood estimator, 1, of u is
X. It is also well known that the maximum likelihood estimator(MLE) of
u constrained by the cone C is the isotonic regression of @t with weight vec-
tor w = (wy,wy, -, wx). The isotonic regression of 0 is the least squares
projection of G onto the cone C, and is usually denoted by u* = Py (|C).

Let Ty, be the likelihood ratio test(LRT) statistic for testing H, : u € C
against Hy,—H, where H, imposes no restriction on u. Then, the LRT statistic
is expressed as Ty, = S°F_, (uf — 4;)?w;. Under the composite null hypothesis
H,, the distribution of T, depends on u in H; and is unknown. However, in
order to guarantee the desired significance level «, we usually appeal to the
least favorable distribution of Tj, which is attainable at u; = uy = - - - = uy.
This particular distribution is given by

k
PlTy > t]=> p(l,k;w)P[xi_, > t], t >0, (1.1)
I=1

where x7 is a usual chi-square variable with d degrees of freedom. The level
probability, denoted by p(l,k;w) in (??), is interpreted as the probability
that u* takes on exactly { distinct levels. These probabilities depend not
only on the type of isotonic cone but also on the structure of weight vector
w. In general, the level probabilities are unknown even though we have a
closed form of recursive expressions in the simple linear order case with equal
weights. Refer to Robertson et al.(1988) for details.

Let M denote the number of distinct component values in u*. Then, as is
well known, the conditional variable T}, , given M = [, follows a chi-square
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distribution with k& — [ degrees of freedom, regardless of the type of isotonic
cone and the structure of weight vector. From this fact, one might suggest
a conditional chi-square test for H;, based on the outcome of M. However,
since T1o = 0 if M = k, the use of chi-square test of size o™ given the outcome
of M results in the overall size a*(1 — P[M = k]). Thus, in order to meet
the desired size a, each conditional test given the outcome of M should be
conducted at level a* = a/(1 — P[M = k]). Therefore, the computation of
the full level probability P[M = k] = p(k, k; w) is crucial in constructing the
conditional test.

As is often the case in the asymptotic analysis of ordered categorical data,
the weight vector might be dependent on the underlying parameter values,
and possibly has an ordering among its components in accordance with the
null hypothesis. In this situation, we should find the least favorable param-
eter configuration within the null hypothesis to guarantee the desired signif-
icance level. This problem motivates us to investigate the lower bound for
the probability p(k, k; w) whose the weight vector has an order restriction.
The following section derives the lower bounds for the level probabilities in
the simple linear order, simple tree order, and unimodal order cases. Section
3 discusses applications of these results in the analysis of 2 x k£ contingency
tables, and provides an example of analyzing real data on torus mandibularis.

2. BOUNDS FOR THE FULL LEVEL PROBABILITIES

In this section, we will derive the lower bound for the level probability,
p(k, k; w), when the components of w are also isotonically ordered. Detailed
derivations are provided for the simple linear order case, but the proofs for
other order cones will be omitted because the basic ideas are similar. First,
it should be noted that P[M = k] = P[X € C] where X follows N;(0, W™1)
and W = diag{w;,ws, -, w}. The following lemma states when the level
probability is minimized with respect to wy in the linear order case.

Lemma 1. Let X follow a k-dimensional multivariate normal distribution
Ni(0, W) where W = diag{w;, ws, -, w;} and defineC = {x e R* : z; <
zy < - < x}. Then, we have

inf P[X €C]=P[X €D

wi >0
where D = {x € R*: z; < 2, < -+ < z4-; < 0}. This infimum occurs when
W T o0o.
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Proof. Consider a linear transformation Y = TX such that

vV — { (Xepr = Xo)/(wit + w2, i=1,2,--- k=1
z : ijj/(Z§=1 w]’)l/Z, 1 = k.

J=1

(2.1)

Then, Y follows a multivariate normal distribution Ni(0,R) where R =
TW-1T’. The upper diagonal elements of R are

1 if =
Tij = _[(w.‘+w1+1:,31(1:::1+wt+2)]1/2 if ] =1 + lal = 1727 T k—2
if t=k—-1,7=korifj>i+1.

The image of C under transformation T is T(C) = {y € RF : y; > 0,i =
1,2,---,k —1}. Now, consider another transformation Z = SX such that

(Xip1 — Xo) /(w7 + w2, i=1,2,-- k=2
Zi={ —[(Z5= wiX; + BXen)/{(wily + wi)V?8Y], i=k—1 (2.2)

Vwie Xk, i =k,

where 8 = wy + (wy, 15, w;)'/2. Then, we can show with rather tedious alge-
bra that SW-1S’ = R, and hence, that Y and Z are identically distributed.
Let C,, =STHT(C)) ={x e R* : x=8S""2,2 € T(C)} = {x € R* : Sx ¢
TC)}={xeR':z; <z, < . < ;vk_l,Zf;ll w;x; + frr_y < 0}. Now, de-
fineDy={xeRF:z; <2, < .- < Tho1, 021 wi; + Brr_y < 0,241 < 0}
andDy={xeRF iz <z, <. < a:k_l,Zf;ll wiz;+Prr_y < 0,241 > 0},
Then, C,, is the union of disjoint sets D; and D,. Since B >0,D; =D re-
gardless of w;’s. When w;’s other than w; are fixed, 8 T oo as wy T oo.
And thus, D; | @ as wy | oo, which implies that Cu, I D. Since P[X €
C] = P[Y € T(C)] = P[S"'Y € S™'T(C)] = P[X € C,,], the probability
P[X € C] converges downward to P[X € D] as wy, T co. This completes the
proof. O

Lemma 1 is used to prove the following theorem on the lower bound of
P[X € C] with linear order restriction on weights.

Theorem 1. Suppose that X follow a k-dimensional multivariate normal
distribution N;(0, W~') where W = diag{wy,wy, -+, w} and define C =
(xeRF:z; <z, <+ < zr}. Then, we have

1
inf PXe(l]=

wy <o <ury ék_—l(—k__l)' (2.3)
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and this infimum is obtained by letting wy = wy = -+ = wg_; and wp/w; T
0.

Proof. Let wy,wy, -+, wk_1 be fixed. Then, by Lemma 1, inf,, 5o P[X €
C] = P[X € D] which is achieved when w; — oo. Thus, we can say that
info, <..<ux P[X € C] = infu,<..cun_, P[X € D). Now, let Z = W'/2X and
Dyw = W'D, Then, Z follows N(0,1;) where I, = diag{1,1,---,1}, and
we have Dy, = {z € R* 12 = W/2x x € D} = {z€ R*: W2z ¢ D} =
{z € R* : zlw1‘1/2 < zowy V2 <-..- < zk_lwk_l“l/z < 0}. Suppose x € D.
Then, z; < 273 < -+ < 21 £ 0. Since 0 < w;/wipy < l,i =1, k-1
and z; <0,2=1,---,k —1, we have z; < ;47 < (U),i/'11)i+1)1/2$i+1 and thus
Iiwi_l/z < I,‘+1wi—+ll/2,i =1,2,---,k—2. This implies that x € Dy, and thus,
D C Dyw. Therefore, it follows that P[X € D] = P[Z € Dy] > P[Z € D].
Here, the equality holds when Dy, = D, or equivalently w; = wy = -+ = wy_;.
Using the result of Chase(1974), we get P[Z € D] = [2*~'(k — 1)!]7'. O

The infimum level probability in Theorem 1 is the same as Q(k, k) =
lim,, .o p(k, k;w) where w; = wy = -+ = wi_1(< o0}, and it does not
depend on the common value of w;, 1 =1,2,---,k — 1. The infima of the full
level probabilities for other cones are provided in the following theorems. The
proofs are similar to that in the linear order case, and we will omit them.

Theorem 2. Let X follow a k-dimensional multivariate distribution N(0,
W) where W = diag{w;,w,, -, w} and define C = {x € R* : 2, <

x;,t = 2,---,k}. Then, we have

inf  P[X eC]= % (2.4)

wy <w; 2<i<k

This infimum is achieved when wy = w; = -+ = wy.

Theorem 3. Suppose that X follow a k-dimensional multivariate normal
distribution Ni(0, W) where W = diag{w;, ws, -, w;} and define C =
{(xcRF:2y < - <ap>--- >z} Then,

1

il 5, PR ECT= 25-1(h — 1)I(k — 1)’ (2:5)
This infimum is obtained by letting w; = -+ = wy_y, wpy1 = -+ = Wi_,, and

wy/w; T oo for h # 1.
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3. APPLICATION TO CONDITIONAL TESTS

This section discusses how the results on the full level probabilities in
Section 2 can be used in testing problems. Consider a contingency table with
positive cell probabilities p;; = P[(X,Y) = (¢,7)], ¢ = 1,2, j = 1,2,--- k.
Let 01; = p2;/[p1; + p2;] and 655 = prj + poj,j = 1,2, -, k. Various types of
dependence between X and Y discussed by Lehmann(1966) can be defined in
terms of order relations of #;,’s. Since other cases are implicatively straight-
forward, we focus on the negative regression dependence between X and Y
which is expressed as a linear order cone

C = {91 0 20120 2> 91k}- (3-1)

Most researchers have been interested merely in order relations as given
in (?7?), and have paid little attention to the impact of the shape of marginal
distribution of Y. However, as is often the case in clinical data, the marginal
distribution of ¥ may have also a shape restriction. For example, suppose
that Y represents the severity of a certain symptom. Since the sources of
patients are usually ordered in size according to the level of severity, the
marginal probabilities of Y would have a descending order under multinomial
sampling scheme. Thus, in this case, the whole parameter space would be
limited to a class of contingency tables with 85 > 655 > -+ > 6.

In this limited parameter space, we might be interested in testing the
goodness-of-fit of the positive regression dependence between X and Y. If
we reparameterize by setting 6y; = po;/[p1; + po;] and 6y; = py; + py;, the
problem becomes that of testing H; = {0 : 011 > 012 > -+ > Oy, oy > 0y >
--- > gk} against Hy, — Hy where Hy = {0 : 02 > 055 > -+ > 63} Let
n;; be the (7, 7)th cell frequency under multinomial sampling. The likelihood
function is

k k
L(6) = (JL 63 (1 = 6™ )IIT 63", (3.2)

As is discussed in Example 1.5.1 of Robertson et al.(1988), the MLE of 6; =
(011 , 012, - e 61x)" under H; is the isotonic regression of the unrestricted MLE,
0y, where 01; = ng;/[n1; + no;), 7 = 1,2, -+, k, with weights w; = nqy; + no;.
This isotonic regression, 87, is the least squares projection of 6, onto the set
C={x¢€ Rf:2,>2,> - > rr}. Now, the unrestricted MLE’s of 6;;’s
are ézj = [n1; +no;]/n, = 1,2,-- -k, where n = "%, Zle n;;. As shown in
Example 1.5.7 of Robertson et al.(1988), the MLE of the nuisance parameter
0, = (021,840, - - - ,92k)' under both hypotheses is also the isotonic regression

of 8; with equal weights.
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Based on these estimators, we can construct the likelihood ratio test which
rejects H; in favor of H, — Hy for the large values of

Ty = -2 Zk: [r22; In( 01]/911) +ng; In{(1 —07;)/(1 - élf)}] (3.3)

It is well known that the asymptotic distribution of T3, under the null hy-
pothesis H; is a chi-bar-square distribution which is a certain mixture of
chi-square distributions. This complicated null distribution results in miuch
work for computing critical values or p-values.

A simpler approach for this problem is to construct a conditional test
based on the outcome of M, the number of levels in ;. Recall that the
asymptotic conditional distribution of Ty, given M = [ is the chi-square
distribution with & — [ degrees of freedom under H,. Thus, once the event
[M = ] occurs, it would be reasonable to reject Hy when Ty, > xi_;(a®).
Since we can not reject H, in the case M = k, the overall size of this test
will be a*(1 — P[M = k]). Hence, in order to meet the overall size a, we
should use o™ = /(1 — P[M = k}) in each conditional test. However, since
P[M = k] depends on the parameter §, we must determine the parameter
configuration for which the conditional test is least favorable. This will be
possible by finding the infimum of P[M = k| over the parameters in H;.

First, define Z,, = {x € R* : z; > 2,4, if 0;; = 61,41} It is not hard
to show that \/ﬁ(él — 0,) converges weakly to U = (Uy,---,Ux)" where
U;,j = 1,--+,k are independent normal variables whose mean and variance
are E[U; ] = 0 and Var[U;] = 01;(1 — 01;)/02;, respectively. Since 6, converges
almost surely to 6, as n — oo, we have 911 > 91 i+1 eventually if 61 > 01 41.
Thus, when 6, is fixed, it follows that

P[M = k] = P[fy; > 015> -~ > 8] » P[U € Tp,] as n — oo.
Since Ty, D C, we have that

inf  lim P[M =k]=P[U €] (3.4)
611220 P00
This infimum occurs when Ty, = C or equivalently 81y, = - - = 6y;.
Now, we need to maximize the probability in (??) with respect to §;. Let
w; = 1/Var[U;],j = 1,---, k. Then, since w; > wy; > -+ > wy under H,
with 0 = 61, = -+ - = 014, it is the immediate result of Theorem 1 that

1
inf lim PIM =k]= inf P[UEC)=

0€H1 n-—00 9212'"292’: 2k_1(k . 1)! . (3.5)
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Table 3.1. Incidence of Torus Mandibularis in Aleutians

Incidence child young adult old adult total

present 7 6 7 20
absent 16 15 4 35
total 23 21 11 55

From this result, the conditional chi-square test should be of size a* — af[l -
1/{25~1(k — 1)!}] so as to meet the desired overall size «.

As an illustration of this conditional testing procedure, we analyze ’torus
mandibularis’ data from an Eskimo population which are tabulated in Table
3.1. These data are obtained by pooling Aleutian groups over sex in Table
9.7-1 of Bishop et al. (1975). Since a* is close to a for large k, we consider only
three groups: child(1 — 10), younger adult (21 — 30), and old adult(over 50).
Suppose we test whether or not the incidence of torus mandibularis occurs
more likely in older groups. As we did in the earlier part of the section, let
01; and 6;; denote the rate of absence of the incidence in the Jth group and
the marginal probability of the jth age group, respectively. Since most of
Eskimo populations are of pyramid structure, it is natural to assume that the
whole parameter space is restricted by 31 > 02, > 6y3. Thus, the problem
becomes that of testing the null hypothesis Hy : 6;, > 6, > 6,5 within
the restricted parameter space. The unconstrained MLE’s of 0;;’s are 61, =
6957, 01, = .7143,0,5 = .3636, 0, = 4182, 0,5 — 3818, and f,3 — .2000. The
Hy—constrained MLE’s are computed as 67, = 07, = .7045, and 0}, = .3636.
For the test of overall size a = .05, we must use o* = .0375 in the conditional
test. Noting that 6] has two distinct levels (M = 2), we do not reject H,
because Ty, = .0183 < x2_,(.0375) = 4.3276.
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