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Abstract

Consider an additive regression model of Y on X = (X1, X3, -+, X}),

Y =%, fi(X;)+ ¢, where fjs are smooth functions to be estimated
and ¢ is a random error. If X;s are fixed design points, we call it the
fixed design additive model. Since the response variable Y is observed
at fixed p-dimensional design points, the behavior of the nonparamet-
ric regression estimator depends on the design. We propose a fixed
design called permutation fixed design, and fit the regression function
by the kernel method. The estimator in the permutation fixed design
achieves the univariate optimal rate of convergence in mean squared
error for any p > 2.
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1. INTRODUCTION

If we have n bivariate observations {(X;,Y;)}",, the regression relation-
ship can be modeled as

Y;‘:TTL(X,')—FE“ 1= L,2,--,n,

with the unknown regression function m and uncorrelated observation errors
€;. We can measure the response Y; at X;, a value of controlled variable
which is fixed in advance (fixed design). In this case m is the mean func-
tion of the response variable with the nonstochastic predictor variable. The
approximation of m by local average is called nonparametric estimation of
the regression function. Much work has been done on nonparametric estima-

tion of regression functions with one predictor using various nonparametric
smoothers (Eubank 1988, Muller 1988, Hardle 1990, and Wand and Jones

1995).
When we are interested in the estimation of a regression surface with more
than one predictor, m(Xy, -, X,), the basic idea of univariate nonparamet-

ric smoothing can be extended to higher demensions by using a p-dimensional
multivariate smoother (Wahba 1979, Miiller 1988, and Georgiev 1989, 1990).
The multivariate local averaging procedure still gives asymptotically con-
sistent estimators to the regression surface. However, there are two major
problems with this approach. First, the optimal rate of mean squared error
(MSE) convergence of the multivariate estimator is n=#/(+?) where ! is an
index of smoothness of the regression surface, so that it tends to be very slow
in high demension. This is often called the curse of dimensionality since a re-
gression surface m(Xj, - -, X,) will require large data sets for even moderate
p. Second, estimates are difficult to interpret for p > 3.

One way of avoiding these problems is to impose an additive structure
on the regression function. More precisely, the regression function takes the
form m(Xy,---,X,) = a+ X5, f;(X;) in the additive model. Friedman
and Stuetzle(1981), Breiman and Friedman(1985), Buja, Hastie and Tibshi-
rani(1989), and Hastie and Tibshirani(1990) proposed various procedures to
estimate an additive regression function. Stone(1985) studied rates of conver-
gence for additive models with the functions estimated by regression splines.
He proved that the optimal rate of convergence for an estimate of the additive
mode] is the same as that for a one-dimensional function. Thus an increase in
the dimension p does not decrese the rate of convergence, as it does if one is
estimating a general (nonadditive) p-dimensional function. Hardle and Tsy-
bakov(1990) investigated a kernel estimator in the random design additive
models, and established the asymptotic distrubution of the estimator.
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In medical or experimental research studying the response at different
points of the controlled variables, the levels of the controlled variables are
fixed in advance by the experimenter resulting in a fixed design. In the fixed
design additive model, the behavior of the regression estimator will depend
on the experimenter’s fixed design for the controlled variables. We propose a
fixed design which is called the permutation fixed design, where we observe
the response variable at design points containing randomly chosen levels for
each controlled variables. The asymptotic behavior of kernel estimator for
this fixed design additive model will be studied in this article.

We conclude the introduction with an outline of the rest of the article. In
section 2, we define the permutation fixed design. It is basically an imitation
of random design. We use the Gasser-Miller estimator on all the ¥s to
estimate the functions of the controlled variables. The estimator attains
the univariate optimal rate of convergence for any p > 2. We observe that
kernel estimates perform well for a 2-dimensional fixed design by simulation
in section 3.

2. PERMUTATION FIXED DESIGN ADDITIVE MODELS

Suppose that we have a response variable Y, p controlled variables (or
factors) Xy, X, -+, X,, and X; has n; equally spaced design points, 7 =
1,2,---,p. The additive model

P
Y=a+) fi(X;)+e,
7=1

where o = E(Y) at (Xi,--+,X,) = (21, -+, 2p) with fi(z;)=0,7=1,---,p
is assumed. Suppose that the kernel K" and the marginal regression functions
fjs satisfy the following conditions for the fixed design.

(A1) The jth controlled variable X; takes its levels X; ; = ¢;/n;, i; =
1,2,---,nj, 5 =1,2,---,p. Thus the support of X; is S = [0, 1].

(A2) K is bounded, symmetric, nonnegative on the support [—1,1], and
Holder continuous, i.e., |K(z) — K(y)| < ¢|x — y| for all z and y, and
some constant c.

(A3) [K(u)du =1, [WK(u)du = 0,5 = 1,2,---,— 1, and [u'K(u)du <

0.
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(A4) The function f;(-) is bounded, ! times continuously differentiable, and
Ith derivative f](l)() is Holder continuous such that [f](l)(u) — f}l)(v)l <
Mlu—v|?, where 0 < 3<1,j=1,---,p.

(A5) [s f;(t)dt =0, where S is the support of X;, j = 1,2,---,p.

Condition (A5) is needed for the identifiability of the regression function.
Otherwise there will be free constants in each marginal regression function
f;- Since we can estimate the constant o with the average of the response
observations (Y) due to (A5), we omit the constant term in the additive
model from now on.

Suppose that we have p controlled variables (or factors) and each con-

trolled variable has n equally spaced design points (or levels) {X,;,---, X,.;}

where X;; < --- < X,;,7 = 1,---,p. Consider the n-tuple of numbers,
(21,22, -+ ,%n) Where i; € N = {1,2,---,n} and ¢; # i for different j and
k,7=1,2,---,n, k=1,2,--- n. Since there are n! permutations of the set
N, we have n! different n-tuples, (¢1,42,--,7,). We pick one permutatoin

up randomly for each controlled variable, and use it as indices of the levels
of that controlled variable to assign to the experimental units. Thus we can
construct a design with n points such that kth design point consists of the kth
elements of the p permuted n-tuples, as its coordinate indices, k = 1,2, -+, n,
and no two design points have equal X,; values on any marginal j. Thanks
to this permutation design, we observe the response variable at all n different
values of each marginal X, variable.

Now assume we have p randomly selected n-tuples {(i11,%21, ", %n1),
(112,222, -+, @n2), 5 (U1py S2py  * * 5 Unp) }. We define {(Xi,ﬂl, Xz, ,Xikp,p);
k=1,2,---,n} as the set of p-dimensional design points at which we observe

a response variable. Then, the regression model in the permutation fixed
design is

P
)/;kl vik2v"'vikp = Z f.] (Xlk]J) + e'ikl vik27“'v'ikp7
i=1

where the f;s are smooth functions and ¢;,,,
variables with mean 0 and variance o°.

Consider estimation of the regression function m(z) = T0_, f;(z;) at a
fixed point = (21,23, --,z,). The regression function m(z) is estimated by
the Gasser-Miller estimator by smoothing observations on the design points
of each controlled variable. Though the local linear kernel estimator (Fan

1992) is popular, we use the Gasser-Miiller estimator for its simplicity in the

{2 rikpS ATE independent random
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proof of consistency and for having the same asymptotic bias and variance
as of the local linear estimator at the interior points in fixed design. Before
describing the estimation procedure, we need to arrange the data so that it
is possible.

For the jth controlled variable, {(X;, ;);k =1, --,n} is rearranged in in-
creasing order and call it {(X;;)}?,. We need also to arrange the observations
of the response variable corresponding to {(X;;)}x,, and call it {(Y¥;;)}7%,
Thus we have p sets of data {{(Y;;, )}1_15j =1,2,---,p} which are used
to estimate the f;s. Note that {(Y;;, Xi;)}7, has the same Y values for
j=1,2,---,p, but they are in a different order.

The estimate m(z) at £ = (z1, 22, -, Z,) is formed as follows :
p ~ .
:ij(:cj)v 27_7'6[0,1],]21,2,"',]), (21)
7=1
with

N

1 & s  (X; —$
filz;) = TZY”/ K ( ])\ )ds, Sic1,; < Xij < 844,

n

where the bandwidth A\, > 0. Here also we use the same bandwidth A,
to estimate each function f;. The asymptotic properties of the mean and
variance of the estimator are derived under the assumptions (Al) through
(A5). We will examine the rate of convergence of the estimator in a mean
squared error sense.

The following theorem 1 insures the optimal rate of convergence of Mm(z)
defined in (2.1) which will be shown in the Corollary 1. The proofs of the
following theorem 1 and a corollary 1 are in the Appendix.

Theorem 1.  Assume X,;,---,X,; are equally spaced on [0,1] for j =
1,---,p. For z = (21,22, -, 2p) such that z; € [A\,,1 = A, 7 =1,2,---,p,

l

4+ 2 / WK (u dqu +oA‘)+o<)

(2.2)

B = 3 St

. (po* +(p = 1) X5 D) ' 1
Var(m(z)) = /_1 K*(u)du + O (m)

ni,

+0 (—) , (2.3)
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where D; = [ fHt)dt, j =12 p.

Now we explore the MSE of m(x) of (2.1) for the permutation fixed design
in the following corollary.

Corollary 1.  Assume (A2)-(A5), and Xy;, -, X, are equally spaced on
[0.1] for j = 1,2,---,p. Then, if n — oo, and A, — 0 in such a way that
nA, — oo, then

MSE(rn(z)) ~ e+ 2 ;)\1) Z§:1 2/ /_11 1{2(U)du
A2 2 (/0 2
Ty </ “11"('“”“) (]; f}”(wj)) L (24

where D; is defined in the Theorem 1. The asymptotically optimal bandwidth
1S

o W+ (= 1) S D-)fl1 K2(u)du ) |
e Tyl 0 , (2.5)
2nl( 2w K (u)du)¥( ] 1f (z;))?

where Y7_, f(z;) # 0, and

MSE(r72(); An(opt))

~ (204 l){(l!)2(21)2l}—1/(21+1){((pa +( ZDj)/]s'z(u)du)

7=1

1/(20+1)
. (/u K( u)(lu) (Z f(l) ])) } n= 2/ (2041) (2.6)

The asymptotic results about the univariate regression function estimate
are the special case of those of the additive one with p = 1. The asymptotic
bias and variance of the univariate Gasser-Miiller estimator are the same as
the results of the Theorem 1 where p = 1, respectively. Therefore the asymp-
totic pointwise MSE of the univariate regression function estimate coincides
with the results of the Corollary 1 when p = 1.
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It follows from the Corollary 1 that the rate of convergence of m(z) is free
from the curse of dimensionality when p > 2, since

MSE((2); Angopy) ~ O(n ™2/ @1,

the same optimal rate of convergence as for a one-dimensional function. It is
due to the small remainder term O(n™') in the bias of the permutation design
estimate as shown in the Theorem 1. The bias remainder term decreases
fast enough to guarantee its estimate to attain the univariate optimal rate
of MSE convergence. The asymptotic variance of the fixed design estimate
has the rate O((nA,)™"). Therefore it does not hinder the asymptotic MSE

of the permutation fixed design from reaching the optimal convergence rate
O(nﬂ/(QH'l)).

3. SIMULATIONS

We conducted a simulation study to examine the performance of the pro-
posed kernel estimator for a 2-dimensional additive model. The kernel func-
tion used was K(u) = (3/4)(1 — u?) for |u| < 1. The Generalized Cross
Validation (GCV, Eubank 1988) was used for fast implementation to select a
bandwidth. The estimate with the selected bandwidth was used to compose
the regression function estimate. The random errors ¢; in the model were
assumed to be independent, and follow the normal distribution with mean 0
and variance 1. We considered a 2-dimensional additive model so that it is
possible to visualize the regression function estimates.

The model considered in the permutation fixed design was

Y = fi(Xh) + f2(X2) +¢,

where fy(Xy) = (1/3)(X0H) )Ty ox, cop(X) + (1/3)(—e=2517D 4 2)
To<x, <iy(X1), fo(Xo) = 4X3—2X, , and the levels of X; and X are equally
spaced in the interval [—1,1]. We took 400 observations at the permutation
design points. Figures 1(a) and 1(b) show the estimates f1 and f; with their
true functions at 50 equally spaced points, respectively. Fugure 1(c) shows
that i is close to the true regression surface m in Fugure 1(d).

So far we have examined the performance of our proposed estimator with
one random sample. To check if the permutation fixed design estimator be-
haves well in general, for given value of n, 200 random samples were drawn
from the above model. For each random sample, fj(xij) was computed at
z;; = —1+42i/100,1=1,---,100, j = 1,2. At each z;;, the 200 values of
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Figure 1. (a) Estimates f; (the solid line) and the true function f1 (the dot-
ted line), (b) Estimates f; (the solid line) and the true function f, (the dotted
line), (c) Estimates i, and (d) True mean surface m in the permutation fixed
design. * in (a), (b) are {Y;1}7; and {Y;;}",, respectively.
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N o
£ o
(}l -
) T 1 1 T
-1.0 05 0.0 05 1.0
x1
(a) The envelope of f1(x1)
o A
g o
T
(}j -

-1.0 0.5 0.0 05 1.0
x2
(b} The envelope of f2(x2)

Figure 2. Envelopes of fl and f, in the permutation fixed design. The upper,
middle, and lower dotted line is 95th, 50th, and 5th percentile, respectively.
The solid line is the true function.
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fi(zi;) were ordered. The median, 5th percentile and 95th percentile were
computed. The resulting envelopes of the estimates along with the true curves
are plotted in Figure 2(a) and Figure 2(b). The medians of the estimates are
very close to their true curves on the entire ranges of the controlled variables.
The widths of both envelopes are constant in the interior of the intervals.
Figure 2 gives evidence of the good performance of the proposed estimator in
the interior.

4. CONCLUDING REMARKS

The objective of this research was to develop kernel estimaton procedures
for additive regression models with fixed design. Since the major attraction
of the additive model is the achievability of the univariate optimal rate of
convergence, the optimal rate of convergence of the estimators is important.
We proposed a fixed design called permutation fixed design where the kernel
estimator of the additive mean function attains the optimal rate of conver-
gence. We used the Gasser-Miiller estimator for the regression model. The
estimator of the additive mean function -*_, f;(X;) was defined as a sum
of the estimators f]-, and fj was constructed by smoothing response obser-
vations. The kernel estimator in the permutation fixed design attains the
optimal rate of convergence for any p > 1.

5. APPENDIX: PROOFS

Proof of Theorem 1.

For k # j, let l;; be the index at which X, 4 is the level of kth controlled
variable when Y;; is observed. Then we can express the regression model as
follows :

P
Yij=fi(Xi))+ Y felXs) ey i=1,--n,j=1,---,p (5.1)
k=1

k#g

Note that X, is a discrete uniform random variable when X; = Xj;. For
i =1,2,---,n, when X; = X,; the kth controlled variable level X, ;. takes any
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value with the equal probability from the remaining (n — 1 + 1) fixed levels
after (¢ — 1) levels of X were taken for X; = Xj;,---, Xi=1; by the per-
mutation design procedure. Therefore {X;, }7 , is a random sample without
replacement from a finite population { Xk, Xog, -, Xux}, and is independent

Of {le,ng, s ,Xn]‘}. Given (le,XQj, e ,Xn]'),

E(fi(z;) = %meﬁ) [ K (B2)as

1 t—1,3 n

L | sy (x;— S
b Y T B [ (s s € X < s

(5.2)

Using the Mean Value Theorem and the Taylor’s expansion we can show the
first term of (5.2),

An

1 & Siy [ ZT;— 8 P R
(X / A( o )ds = file) + 5 f0) [ K ()

Fo(A)) + o(-i—). (5.3)

Now consider the second term of (5.2). We evaluate E( fi(X, %)) first. For
i =1, E(fi(Xi,x)) = (1/n) Zie; fu(Xu) since Xy, 5 can take any level with
the same probability 1/n from { Xz, Xog, -+, Xpx}. For 1 < ¢ <n, however,
the index li; depends on the set of indices Lyi—1) = {lx1,lk2, -, lx(i-1)} that
was chosen before by the permutation design procedure.

=1

E(fk(lek)) E(E( (Xlk, )I(Xlklk’Xlnk"”7Xlk(:—1)k)))

l
- E( fk(Xlk)>, where N = {1,2,-- ,n},
" IEN\Lk(; —1)
P ( 1 S X))
- n i1 KXk
(i— ) Ligoyy T 0T 1 1€N\Ly(i_1)

(2) S fe(Xu) 1 &
(ifl)(n —i+1)  nE
The second equation to the last is obtained as follows: For m = 1,2,--- n,

fe(Xomk) appears (?__11) times in ELW_U EleN\Lk(,_l) since we have fi(Xnk)
in the double summation as many times as we choose Ly_q) from N \ {m}.
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Since E( fi(Xi, 1)) = (1/n) S0, fu(Xi), ¢ = 1,2,- -+, n, it is easy to show
that the second term of (5.2) is O(1/n). Therefore from (5.3) and the last
argument,

~

. A i 1
E(fi(23)) = fila) + G £0) [ (wdu+ o0 +0().
Since E(m(z)) = Y5, E(f;(z;)), (2.2) is immediate.

Now we prove (2.3). For notational convenience we use 2%, to indicate
k1 Xk throughout the proof.
J#k
P X P . R
Var((z)) = 3 Var(fi(z;)) + 3 Cov(f;(x;), fular))- (5-4)
=1 i#k
Referring to (5.1), let X(_jy = {( X6, Xiporr - Xpk )i b= 1,5 — 1,5 +
17" ')p}7 ] = 1727' P Then

Var(f;(z;)) = E{Var(fi(z;)|X(=;))} + Var{ E(f;(2;)|X(-;))}- (5.5)
Note

BVar(f(e) X)) = 13

2
n i=1 Si-1,5 n
L 81 r; — S 2
_ (%
- >\2Z(/ I( A )ds)’
n =1 Si—1,; n
since Yj;s are independent for given X(_j), 1 = 1,2,---,n. Assume s;; =

(X,'j + X,‘+1,]‘)/2, Z = 1,2, e,
By the Mean Value Theorem and Hélder’s continuity of K(), it is easy
to show that

(/"

=1 11,7

(T — 8 2 _ £ 1 ,<:vj—s>2 (i)
K( . Jis) = — [k ) ds+0(=
An [V 1
_ —/—1]s2(u)du+0(m>,

n
for z; € [An,,1 — X\;]. Hence

0.2

nA, /—11 K (u)du + O<(n;n)2) (5-6)

E{Var(fi(z;)|X(<j)} =
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Since

n

Nl ; 7 1
E(fia)Xn) = 1+

5
+Z

n

it is easy to see that

Varl B X = 3 [ var{ i) [ 00 (P52 Jas)]

n

n 8,5 T;— 8 Sm, z;— 8
e ([ () ([ K (3554
1'27; Si—1,; A'rL Sm—1,; An

Cov(ful Xt Fi(Xiet)] (5.7)

- E IS R

Following the similar steps to evaluate E(fi(X1,x)), we can show that for
1=1,2,--,n,

Var(fi(Xix)) = %gfk(sz) - (%gfk(Xlk)y
_ 01 f,g(t)dt+0(l) —o<:> Dk+0< )

where Dy = [o f2(t)dt. The first term in the bracket of (5.7) becomes
(A Di/n) [}, K*(u)du + O(1/n*). For any ¢ and m(z 76 m), we can see
by applying standard technique |Cov{ fi(Xu.), fe(Xi,nk))| = O(1/n), and

S (7 KRR ([ K)ok o

-o(%)

Hence
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r
=1 Dk

Var{E(f;(x))X )} = —%-n—/_ll I(Z(u)du+0<(n;n)2>+O(%>. (5.8)

Now consider the covariance term in (5.4). For j # k,
Cov(f;(z;), fu(ar))

-ele{(5 2 7w (5
e e
E{A_lg zn: Zn: </_ K (xjA: S) ds) </ik K <xkA: s) ds)

'E(Ez’jc’:’lk)}a (5.9)

2)ds (¥ - B(Yi)))

where ¢;;, € are the random errors corresponding to Yi; and Y, respectively.
Since {(ei;)}i=; and {(e)}~, have the same elements, there exists one ran-
dom error which is the same as ¢;; in {(enx)}%,. So

2 .
Blegeu) = {7 = e
Y 0, otherwise.

Denote [s;,_;, s;,] be the interval where €;; = € on the support of kth con-
trolled variable. Thus (5.9) is equal to

2 n

o sy __[x:— 8 s, _ [(xp—S
([ (5B (L w (5 e)

n o 1=1

Note fori =1,---,n,

s, (T — S LI o ,(zk—s) _ﬁ
E(/Sllllx( . )ds)_nZ/ﬂ_l*A . ds = .

Therefore

|Cov(f(;), fule))| =




Kernel Regression Estimation 513

where ; € (s;-1,;, ;). Hence

Covlf(x,), fe(zx)) = O(-)- (5.10)

Combining the results from (3.4}, (5.5),(5.6), (5.8), and (5.10), (2.3) is imme-
diate.

Proof of Corollary 1.

Note MSE(m(z)) = Var(m(z)) + (E(m(z)) — m(z))?. Equation (2.4) is

immediate from the Theorem 1. (2.5) follows from differentiation of (2.4},
and (2.6) is obtained by substituting (2.5) into (2.4).
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