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ABstract

It has been known for mean field models that the limiting distribu-
tion reflecting the asymptotic behavior of the system is non-Gaussian
at the critical state. Recently, however, Papangelow showed for the
critical Curie-Weiss mean field model that there exist Gaussian struc-
tures in the asymptotic behavior of the total magnetization. We con-
struct Gaussian structures existing in the internal fluctuation of the
system for the critical case of a generalized Curie-Weiss mean field
model.
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1. INTRODUCTION

In the area of statistical mechanics, a ferromagnetic crystal is considered
as a body consisting of n sites, where n is an extremely large integer. The
magnetic spins at these n sites can be modelled by a triangular array of
random variables {Xi(n) 1=1,2,---,n}(n=1,2,---) and the total magneti-
zation of the body is given by S, = Y7, Xi(n). A standard theory of physics
would state that the joint distribution of the spins (X{"),Xé"), <, X)) s
given by

dﬂn(‘rlax%' o 7In) = Z';l eXp{—,BHn(.’El,.’L'z,' o 7‘rn)} H dp(xz) ’ (11)
' =1

where z, is a normalizing constant and 3(> 0) is a constant which plays the
role of inverse temperature. The function H, is known as the Hamiltonian
which represents the energy of the body. When the Hamiltonian takes the
particular form H,(zq,---,z,) = —(3 ;)*/2n, the model (1.1) is usually
called the Curie-Weiss mean field model and a number of probabilistic results
have been established for this model. Ellis and Newman(1978b) showed,
under appropriate conditions on the probability measure P , that there exist
a real number m and a positive integer k so that (S, — nm)/nl_ﬁ converges
in distribution to a random variable whose distribution is Gaussian if & = 1
and non-Gaussian if £ > 2. It was also shown for the Curie-Weiss mean field
model with £ > 2 that the critical value of 3, at which a phase transition
occurs, equals 1. Chaganty and Sethuraman(1987) extended the result of
Ellis and Newman for a more generalized model in which the Hamiltonian
takes the following form

Hy(zy,29,-,2) = —n{(z1 + 22+ -+ 2,)/n}, (1.2)

where 1, 1s the cumulant generating function of some suitable random vari-
able. Their main tool was the large deviation local limit theorem for arbitrary
sequence of random variables of Chaganty and Sethuraman(1985). Chot, Kim
and Jeon(1989) also extended the result of Ellis and Newman and obtained
same result utilizing the saddlepoint approximation for the probability den-
sity function of the sample mean, due to Daniels(1954). It was also revealed
for the generalized model (1.2) that the limiting distribution reflecting the
asymptotic behavior of S, is non-Gaussian for the critical case. Recently,
however, Papangelow(1989) showed for the critical Curie-Weiss mean field
model that there exist Gaussian structures in the asymptotic behavior of S,,.
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The purpose of this paper is to construct Gaussian structures in the
asymptotic behavior of S,, utilizing the large deviation local limit theorem
of Chaganty and Sethuraman, for the critical case of the generalized Curie-
Weiss mean field model (1.2). In section 2, we develop some notations and
define the generalized Curie-Weiss mean field model (1.2) precisely. In section
3, the basic limit theorem is established and limit theorems on the asymp-
totic Gaussian structures are derived. We will prove that if there are 2n
sites and we let S, = >, XZ»(%) and S,o = Y22 4 Xl-(Zn), then there
exist sequences of real numbers {7,} and {o,.} such that the difference
(Sp1 — n7n)/\/Tatt = (Sn2 — 17, )/ /0.1 has an asymptotic normal distribu-
tion. To construct Gaussian structures for the generalized model (1.2), we use
the results of Changanty and Sethuraman(1985,1987). Thus the proof is a
little technical and complicated although many steps in the proof appear to
be similar to those of Papangelow. Section 4 gives some examples.

2. A GENERALIZATION OF THE CURIE-WEISS MEAN
FIELD MODEL

Let {T,} be a sequence of nonlattice valued random variables with the
corresponding distributions @,, and moment generating functions ¢,(s) finite
for real s such that |s] < ¢ < oco. Assume that ¢,(z), n > 1, are analytic
and nonvanishing for complex z in @ = {z : |z] < ¢1}, where 0 < ¢; < ¢
Define I = (—a,a) and Q, = {z : |z| < a}, where 0 < a < ¢;. Let y,(t) =
SUP|s<[ £5—¥n(s) ], for t € R, be the large deviation rate of the distribution
Q. and let ¥, (z) = n7' log ¢,.(2), for z € Q. Let A, = { ¥/ (s):s €1 }.
Then, for t € Ay, 1a(t) = 138, — ¥u(s,) , where 9] (s,) =t and s, € 1.

We will now define the generalized Curie-Weiss mean field model.

Definition 1. Let L* be the class of probability distributions P on (—c,c¢)
such that

/C exp {thn ()} dP(z) < oo | (2.1)

—C

Let {Xi(n) c1=1,2,--- ,n}{(n=1,2,--+) be a triangular array of random
variables satisfying IXYL»(n)| < ¢ and having the joint distribution of the n-th
row (Xl(n) ,Xg(n) -+, X[™) given by

d/‘;(xlyx% R ’xn> = z,;l exp {n -, (% 2;171)} H dP(;I‘L) , (2.2)
i=1 =1
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where P € L* and z, is a normalizing constant.

Remark 1. When T, is the sum of n 7.7.d. random variables whose common
distribution is standard normal, the model (2.2) becomes the Curie-Weiss
mean field model and if common distribution has moment generating func-
tion finite for all real values, the model reduces to the generalized model
considered by Choi,Kim and Jeon(1989). In this sense, the model (2.2) is a
generalized one of the Curie-Weiss mean field model.

For the probability distribution P which belongs to L*, let 1p(t) denote
the cumulant generating function of P. Condition (2.1) implies that ¥p(t) is
finite for t € B, = { t : 74,(t) < co }. For the probability distributions Q,
and P(€ L*), we define

n(t) - 'L.Z)P(t)v te an
Gn(t) = { Zo, t¢ B,.

Definition 2. A real number m, is said to be a global minimum for G, if

G.(t) > G,(m,) for all ¢.

(2.3)

Definition 3. A global minimum m, for G, is said to be of type k if

t2k

Golt + M) — Go(1ny) = 2

20! + o([t|**) as t—0, (2.4)

where ¢y, = G2*)(m,,) is strictly positive.

We assume that there exist [, p;(> 0) such that
/ exp{— |- Gp(t)}dt = O(n?), (2.5)
Bn

and the functions GG, have the unique global minimum at some point m,,.
Furthermore, assume that there exists n; > 0 such that , for all 0 < § < 7y,

inf [ Go(t+my) —Gu(my,) ] = min [ Gu(m, +56) — G.(m,) . (2.6)

It]>6 s=—1,1

Remark 2. An easily verifiable sufficient condition for (2.6) is

Go(t) > 0, for t > m,, and G.(t) <0, for t <m,. (2.7)
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In Example 2, we will verify condition (2.7) instead of condition (2.6).

Remark 3. Suppose that B, = (—o0o,00). If ~,(t)/[t| converges to oo
as |t| — oo, then condition (2.1) implies condition (2.6). For the proof, see
Remark 3.3 of Chaganty and Sethuraman(1987).

The following theorem of Chaganty and Sethuraman(1985) is a large de-
viation local limit theorem, which provides an asymptotic expansion for the
density function of 1, /n, and applied crucially to obtaining the result of
Chaganty and Sethuraman(1987), which is in turn used in Theorem 2. Let
m, € A,. Then there exists 7, in [ such that ! (1) = my,. Fort €I, we
define V,,(t) = ¥n(7n) + ity — Pn(mm + it).

Theorem 1. Assume the following conditions for 7T}, :

(A1) There exists € > 0 such that |1,(z)| < e for z € Q, and n > 1.
(A2) There exists o > 0 such that ¢;(7) = o for 7 €[/ and n > 1.
(A3) There exists 7 > 0 such that, for any 0 < o <,

inf { Real(V,(t)) } = min{ Real(V,(8),Vn(-6))}, forn2=>1.

ft1>6

(A4) There exists p > 0 such that

1
oQ n

Gn(T + 1)
én(7)

Then the density function k, of T,/n at m, is given by

sup
Tel v —00

dt = O(n?).

1

nlm) = [é—fﬁ] cop(-nmim [110 ()] @9

3. ASYMPTOTIC GAUSSIAN STRUCTURES IN THE
CRITICAL GENERALIZED CURIE-WEISS MODEL

We construct in this section Gaussian structures of the asymptotic be-
havior of S, for the critical case of the generalized model (2.2). We establish
basic limit theorem,Theorem 2, and derive from this a few limit theorems
which reveal the Gaussian structures of the asymptotic behavior of S,. The
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joint distribution fr can be written as follows :
* -1 ]. n s
dﬂn(xl’I%""xTL) = 2z, én ;Zx, HdP(Ivi)
=1 =1

. [/ exp{@ll)- } u)du}ilj[ldP(m,

where £, is the density function of T} /n.
The substitution © = m,i(y) = m, + yn_sz leads to

1,2 / [H exp {zima, (y )}dP(xi)} ko (1 () ) dy

= z7'n 2k/[H exp {zimn k(y) — ¥p(mar(y))} dP(z;)
X kn(mn k() - exp {np(ma, 1(y))} dy

-/ [H dMn.m)} Ful)dy | (3.1)

where dM, ,(z) = exp {zmn ik (y) — Vp(mai(y))} dP(z),
and f.(y) = Zn_ln—ﬁkn(mn,k(y)) : eXp{nd)P(mn,k(y))}'

Since [pn dpy (21,29, 2,) = 1 and [dM,,(z;) = 1 for each fixed y,
we have [ fo(y)dy = 1. Thus f,(y) is a density function for each n. The
representation (3.1) therefore shows that we can introduce a new random
variable W, with the density function f,(y) such that, given W, = y, the
X( Vs are i.i.d. random variables with the common distribution dM,, ()
and hence with the cumulant generating function :

log B, , [exp{tXi(n)} ]

= log /exp{tx} cexp{ z-mu(y) — Ye(mer(y)) } dP(z)

= Yp(t+mui(y)) — vp(ma(y)) - (32)

For each r = 1,2,--- let ¢(r) be a positive integer and let n(r)=r-q(r).
We assume that the sequence ¢(r), r =1,2,---, is nondecreasing, and there
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is no loss of generality if we further assume that either ¢(r) is constant or
q(r) — oo as r — oo. For convenience we will write n for n(r) and ¢ for ¢(r)
but it must be kept in mind that n and ¢ depend on r. To investigate the
joint distribution of

Xl(n)+”'+Xr(n)’ X(+1 +o + X27‘7 o X(n 1)r41 oot X

qr ?

let S, = 71X(”),5 =5 = §=1X((?_)1)T+j’i=1»27""‘17 and p;(r) =

o—n—% rin~s% P8 (m) /i, r =12, =12, k We will write
p; for p;(r) as with ¢ and n. Further let 7, = ¥/"'(m,) = ¥p(m,) and
on = Yh(my,).

Theorem 2. Let (X () X(n) -+, XM} have the joint distribution x> given
by (2.2). Suppose that G, satlsﬁes conditions (2.5) and (2.6) and has the
unique global minimum of type k(> 2) at m,(€ A,). Let m,, — m and
cakm = G (m,) — ¢y, as n — oo, where m is an interior point of N An.
Assume that {T,} satisfies the conditions of Theorem 1. Then, as r — oo,
the random variables

S, —nt, ST, B zk: p-Wj Srq =TTy
Unnl"ilk' ’ ﬁ i=1 e ’ \/ﬁ
are asymptotically independent, the density function of the asymptotic distri-
bution of the first random variable is exp{ —cuy?F [ (2K)}/ f{cgky%/(Zk)'}dy,
and the asymptotic distribution of (S,; —r7,)/\/o.r E] L piWi i fixed,

1s the standard normal. The statement remains true if we replace the first
. 1
random variable (S, — n7,)/o,n'"2% by W,.

k
- > Wl (33)
1=1

Proof. We first prove the second case with W,, in place of the first random
variable (S, — n7,)/o,n'"%% in (3.3). The asymptotic distribution of W, is
established in Theorem 3.7 of Chaganty and Sethuraman(1987). Let {y,} be
a sequence of real numbers such that y. — vy as r — oo. Then, by the
representation (3.1) of the joint distribution x|, given W,, = y,, the random
variables

Sya = 1Ty B zk: Wi Sra Zk: :
SoLT j=1 Pt ’ \/J r =1 W

are conditionally 7.7.d., each with cumulant generating function :

i g

log £
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t 1
= 7"{ “bP ( ,————a_nr +mn +y1‘n—ﬁ) - ¢P <Tnn +yrn—§]—k—) }

rT,t
~ o thJyr by (3.2)

t2
= b {pOma oty E) = Phlma) |+ ubma )

Vo On
k .
—t>_piyl + o(1)
j=1

t2

f gt 2 1 s
= E{Zd) (m )n 3yl +o(r 2)}+§¢};(mn+ym—ﬁ)_

On 7=1 n

ﬁ

k
=t piyl + o(l)
7=1
1 " L t?
= 5 p(m, +y,n"2%)— 4+ o(l) as r— oo.

n

This converges to 2¢* as r — oo and hence it follows that the conditional
distribution of (S,; — r7,)/\/0nr, given W, = y,, is asymptotically standard
normal, independently of y. Thus the second half of the theorem now follows
from Proposition of Papangelow(1989). In the special case where ¢(r) = 1,

for all r, what we have just proved implies that

S — T, u ;o d
VA > pWl — N(0,1), (3.4)
n j=1

and it can be easily shown by (3.4) that {S, —nr,}/o.n'"2% — W, 5 0.
Since this implies the first part of the theorem, the proof is completed.

A number of consequences can be derived from Theorem 2. To state
- them we now introduce a sequence of independent random variables. Let
Y,Y:,Y,, --- be a sequence of independent random variables such that the
density of Y is const - exp{—cuy®/(2k)!}dy, where const is a normalizing
constant, and each of Y;,Y5, - has the standard normal distribution.
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Theorem 3. The random vector

Sp—nT, Sr2 =TTy Sr1 =TTy Srg =TT Sp1— 1Ty
ol \fOar Jour e JonT
converges in distribution to (Y;Y, — ¥4,Y5 — Yy, --- ), where the latter

contains finitely many or infinitely many components according as ¢(r) is
fixed or tends to oo as r — oco. If g(r) is fixed, then the random vector

Sp—nT, S, —nT, 1 5,—nr, Srq =TT 1 S5, —n7,
o‘nnl_fl—k' T Jaar V3 A/onn ’ T\ JaaT V4 /oan
converges in distribution to (Y ;Y] — 52;-1:1 Y;, -, Y, — % .Y ) :

Proof. The first part of the theorem follows from Theorem 2. For the last
part, let Vi(r) = {S;i— 17} [/ /O — Z?Zl p;Wi,1=1,2, ---, q. Then
we have, for each 1, Vi(T) DY Vi(r) <, Y — ¢! .,Y; and

Sri

r lq r Y—TTn : ] - _
I N S qZ( o ZW)
Sr,i_rTn 15 —NTn

NN O

Thus the last part is again an obvious consequence of Theorem 3.

The rate of the growth of ¢(r) is crucial for the asymptotic behavior of
partial sums. If 7*/n — 0 as r — oo, then p; — 0 asr — oo, for each 7,

and if n = o(r*) asr — oo, then q?lc{ST,2 rn} | onr? % — W, 0.
If r*/n — ¢ asr — oo, where 0 < ¢ < oo, then Z§=1 ;Wi 4, \/c—rczk Y,
where o = ¥%(m). Thus we have the following corollaries as the consequences

of Theorem 2.

Corollary 1. Ifr¥/n — 0 asr — oo, then the random vector

<Sn —nT, Sp1 —TTn Spa —TTh Srq —TTn
1 3 ’ ) ?
oon! T VInT VInT VInT

converges in distribution to the random sequence (Y ; Y1,Ys, -+ ).
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Corollary 2. Ifr¥/n — casr — oo, where 0 < ¢ < 00, then the random

vector
S, —nt, . Spq — 1T, Sra — 1Ty, Srq—TTn
_ 1 3 y T
onnlTE SOpT JSo.r N onr

converges In distribution to the random sequence

(Y VoekY + Yi,\/oekY 11y, - )

Corollary 3. If n = o(r*) as r — oo, then
Sp —n7, 1S — 71T, 18, — 1T,
- 9% P S R B Y T
' T2E onr! 2K Onr! 2R
converges in distribution to (Y ; Y, Y, --- ) | where either finitely many or

infinitely many components are contained as in Theorem 3. In particular, if
q is fixed, then the random vector

S, —n1, _ e Srq =TTy
S e, L
ool o,ntT ok opnlT
converges in distribution to (Y ; ¢7'Y, ¢7'Y, --- [¢7'Y) .

4. EXAMPLES

In all the examples, to simplify matters, let 7, be the sum of n i.;.d.
random variables with common distribution function F. Then the functions
Yn =%, a =7, Va =V, and G, = G are independent of n and therefore it
is straightforward to verify the conditions of Theorem 1.

Example 1. Let F be the standard normal and P be symmetric Bernoulli.
Then the model (2.2) becomes Curie-Weiss mean field model as already men-
tioned. In this case, ¥ (t) = ¢(t) = 12/2, 7, (1) = 4(t) = suplts—1*/2] = t*/2,

and G.(t) = G(t) = t*/2 — log (cosh(t)),t € R. Thus conditions (2.1) and
(2.5) holds clearly. Since B, = (—oo, 00), condition (2.6) holds by Remark 3.
Also, it can be shown by simple calculation that G(t) has the unique global
minimum of type 2 at the origin. Since 7,, = 7 = Yp(0) =0, 0, = 0 =

$(0) = 1 and ¢4 = G®W(0) = 2, we have, by Theorem 3, S, /n?t Ly
where the density of Y is const - exp{—y*/12}dy and

ST’i—i N N(0,2), for each ¢=23,--- 4.

VNG
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Since k = 2, from Corollaries 1, 2 and 3, we have the following results:

n

T d

— N(0,1) for ¢=1,2,---,q, (4.1)

if */n — 0asrt — oo, then

<,

Slz”

if 7*/n — ¢ ast — oo, then

L Y 4+ N,1) for i=1,2,---,4q,

(4.2)

. Sri .
and if n = o(r?) as r — oo, then q]/‘*-r—a/’q—g—)Y for e =1,2,---,q. (4.3)

Example 2. Let F' be the triangular distribution on the interval (—2b, 2b)

with b = 1/3/2 and P be the standard normal distribution. Then the joint
distribution (2.2) is given by

. 1 |n-sinh(bY z;/n) o
d:“n(xlv'r%' o va;n) = an [ by x; gdp(xi) :

In this case condition (2.1) is satisfied since we have, with A > 1,

| e {in(@)} dP(a)

< 2{/0A [ig—:%—)—rdP(aﬁ)—+—/Aoosinh2(b:1:)dP(;v)} < oo

To prove that (G(¢) has the unique global minimum at the origin, note that
G(t) = v(t)—12/2 = ts,(t) —(s,(t)) —t*/2, where s,(t) is the unique solution
of ¥'(s) =t,and G'(t) = v'(¢t) —t = s,(t) —t. Since G(t) is an even function
and G(0) = 0, it 1s sufficient to show that G(¢) > 0 for ¢t > 0. Since G'(t) =
s,(t) —t > 0 if and only if ¢ > ¥(t) and since ¥ (t) = 2{b- coth(bt) — 1/}, we
have only to prove that (z* + 3)sinh{(z) — 3z - cosh(z) > 0, for z > 0. Now we
have, for z > 0,

) . ) o0 r2+1 0 2
(2 + 3)sinh(z) — 3z - cosh(z) = (z°+ 3)]:0 m — 3£j§0 25)!
= (29 i
= 3 - X 7+ > O .
; 3(25 + 1)!
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Furthermore it can be easily shown by simple calculation that G'(0) = G"(0) =
G"(0) = 0 and GW(0) = % > 0. Thus G(¢) has the unique global minimum of
type 2 at the origin. Since G(t) is even and have the unique global minimum
at zero and since G'(t) > 0 for ¢t > 0, condition (2.6) holds by (2.7). Since P
is standard normal, 7, = 7 = ¢¥,(0) = 0 and 0, = 0 = ¥%(0) = 1. Thus,

3/4

from Theorem 3, we get S,, / n Ay , where the density function of Y

is const -exp{ —y*/40 } dy and
Sy Sr1 o d
—_ - = —
ARVE
From Corollaries 1, 2 and 3, we have the same results as those in (4.1),
(4.2) and (4.3).

N(0,2) foreachi=1,2--- 4.
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