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Abstract

This paper deals with the problem of estimating the autoregressive
random coefficient of a first-order random coefficient autoregressive
time series model applied to panel data of time series.The autoregres-
sive random coeflicients across individual units are assumed to be a
random sample from a truncated normal distribution with the space
(=1, 1) for stationarity. The estimates of random coefficients are ob-
tained by an empirical Bayes procedure using the estimates of model
parameters. Also, a Monte Carlo study is conducted to support the
estimation procedure proposed in this paper. Finally, we apply our
results to the economic panel data in Liu and Tiao(1980).
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1. INTRODUCTION

Data collected on the same individual units in several periods are referred
to as pooled cross-sectional and time series data or panel data. Linear re-
gression models with random coefficients for panel data have very extensively
been used in the analysis of economic, marketing, management, sociological,
geological, environmental, biological, and industrial panel data.

Our interests in this paper are in time series model. The use of time series
models with constant coeflicients is quite common, but this is restrictive in
most real situations. In reality such models are not well fitted to a set of
real data. This necessiates the application of coefficients variation in model
across the individual units. Thus, it is reasonable to suppose that random
coefficients are random drawings from some population distribution.

The steady researches on the random coefficient autoregressive(RCAR)
time series model have been shown in Nicholls and Quinn(1980, 1982), and
Quinn and Nicholls(1981). This paper deals with RCAR time series model
applied to specially panel data. As a research on the RCAR model for panel
data Liu and Tiao(1980) discussed the Bayes estimation of random coefficient
in the first-order RCAR model, where the autoregressive coeflicients across
units are regarded as a random sample from a beta distribution rescaled to
the space (—1, 1) for stationarity. Li and Hui(1983) suggested non-parametric
empirical Bayes estimation, similar to that of Martz and Krutchkoff(1969), of
random coefficients in the pth-order RCAR model where the prior distribution
of random coefficients is generally unknown but its support is restricted to
(—1,1) for stationarity. Kim and Basawa(1992) discussed an empirical Bayes
estimation of random coefficient for a first-order RCAR model in which ran-
dom coefficients are assumed to be normally distributed and studied large
sample properties of estimates. Here, we note that they did not restrict the
random coefficients to the stationary region (—1, 1) but permitted to the
region (—oo, 00). All of them assumed in common that random errors in
their model are normally distributed.

In this paper, we discuss the estimation of the model parameters and the
autoregressive random coefficient of a first-order stationary RCAR model for
panel data. We begin the next section by introducing the first-order sta-
tionary RCAR model dealed with in this paper in which random coefficients
have a truncated normal distribution in (—1, 1) for stationarity and random
errors have a normal distribution. In Section 3, we discuss the method for es-
timating the unknown parameters of the model. Also, we obtain an empirical
Bayes estimate of random coefficient using the estimates of parameters. We
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perform a simulation study to investigate the sample behaviors of estimates
in Section 4. In Section 5, we applied our estimation method suggested in
this paper to panel data of economic time series of Liu and Tiao(1980).

2. THE MODEL

The RCAR model used for panel data of m stationary time series observed
from m individual units is as follows:

Xj,t — ¢ij,t—1+"€j,t7 ] - 1,2, o.M, i = 1,2, ceey Ny, (21)

where X, is the tth observation of the jth series, {¢;,} is a sequence of i.i.d.
N(0, o?) random variables, and ¢; is the autoregressive random coefficient
of the jth series such as |¢;] < 1 for stationarity. Furthermore, {¢;} is
independent of {¢;,}. Now, we assume that the ¢;’s are independent drawings
from the truncated normal distribution,

exp{~(¢; — #)*/26}
Siyexp{~(t - §)?/26}dt’

where —00 < f < oo and 0 < § < 0.

f(¢5:8,6) = —1<¢;<1,(22)

3. THE ESTIMATION PROCEDURE

First, we discuss the estimation of parameters, 3, é, and o2, of the model
(2.1). The likelihood function of ¢y, ¢2, ..., ¢, a sample of size m, following
the probability density function(p.d.f) (2.2) is

exp{— Xjui(¢; — B)?/26}
Sy exp{~(t - B)2/26}at}"
where —00 < 3 < 00, 0 < § < 00. In order to obtain the maximum likelihood

estimates(MLEs) of 8 and é that maximize the likelihood function (3.1) we
know that it is convenient to consider a monotone function of log likelihood,

(3.1)

L(,@,(ﬂé) - {
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L*(8,8l¢) = -2InL(B,6|¢) —mIn2x
= n 3 . — B)? m In L——ﬁ— —1-48
= ml 6+J§(¢] BY'/6 + 2m In{(2(—7=) — @(—7=—)},
(3.2)

where ®(t) = [* e v"/2/\/2rdy. Since we can not know the random co-
effcients ¢;’s, in our practical estimation procedure we substitute ¢;,; =
1,2,...,m, in (3.2) by the least square estimate of ¢;,

nj
P et Xjp X
LSE = ATy
=2 X5i-1

, i=12,...,m. (3.3)

Now, the solutions of 3 and § which minimize L*(3, é Ié Lo E) are the MLEs of
B and 6. Exactly speaking, they are the pseudo MLEs of 8 and é.

Mittal and Dahiya(1987) showed that for some truncated normal sam-
ples the MLEs are nonexistent and become infinite with positive probability.
When 6 approaches oo for fixed 8, Var(¢;) approaches 0.3333---. Thus the
MLEs don’t exist whenever Var(¢;) > 0.3333 ... Mittal and Dahiya(1987)
proposed the modified MLEs to rectify the infinity of MLEs. To modify the
likelihood function they took the chi-square p.d.f. with the degree of freedom
v as the prior density for 1/6 and the non-informative prior for 3. We can
also take the gamma p.d.f., the Wald p.d.f. or the Weibull p.d.f. as the prior
density for 1/6.

Now, the modified likelihood function which we shall use is

1
5 it i

Ly (B,8l¢,s,) = {W}'L(ﬂaﬂﬁw)- (3.4)
For appropriate v, the modified pseudo MLEs of 2 and é are the values of 3
and 6 which minimize the monotone log function of (3.4),
A - v
Ly (8,6l¢,,.) = —2InLy(B,6l¢, ;) —mln2r — 2ln{F(§)2”/2}

= (v tm-2)ns+ (3 (¢~ B+ 1}/8

+ 2m ln{(é(l—\-/__(s—) —@(_i/%ﬂ)}. (3.5)
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It is shown in Mittal and Dahiya(1987) that the value of » = 4 minimizes the
maximum asymptotic bias of the modified MLE of § for 1a1ge values of §.

We define the sample variance of ¢] Lse, jJ=1,2,...,m, as
§%(¢) = Z $iLse — (3.6)
where | - :
¢=— > qgj.LSE- (3.7)
m 3

In the simulation study of Section 4, we have a strategy of obtaining the
MLEs of 8 and 6 which minimize the function L (3, 6]¢LSE) in (3.2) if $2(¢) <
(0.95)(0.3333 - - -) and the modified pseudo MLEs of 8 and 6 which minimize
the function L, (8, 8|¢ Lep) With v =41 1n (3.5) if $2(¢) > (0.95)(0.3333 - -).

Finally, we use as the estimate of o2

52 — E;n 1Zt 2(5Jt - 5)2

m
ang = m—1

? (3-8)

where é;, = X dgngEXJt 1and§—21 LS €/ (2 Tan; — m).
Next, we turn to the problem of obtaining the estimates of random coef-
ficient. The joint p.d.f. of X; = (X;1, Xj2,- -+, Xjn;) for each j is

nj

ny 1 it
F(X;195) = 1 f(e50) = (2m0®) ™7 exp {—Q_UEZ(XN - ¢ij¢—1)2} . (3.9)
t=1

t=1

From (2.2) and (3.9), the posterior p.d.f. of ¢; given X; = (X1, Xj, - , Xim,)
is

f(¢.7)f( |¢J) exp{ 2L(¢J - E) }
51X ;) = = , 3.10
0K = T londs - Trowipu-ona O
where
Bo® + 634 ]tht-‘l 026
= : = . 11
‘ o + 6L Jt 1 and v = o2+ 830, Jt 1 (3.1

That is, the posterior p.d.f. of ¢; has a truncated normal distribution
N(¢,v), where —1 < ¢; < 1. Hence, from (3.10) and Johnson and Kotz(1970,
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p80-83) the Bayes estimate of ¢; with respect to the quadratic loss is given
by
22 - 2(5%)
(¢]IX)‘£+\f T e [ (3.12)
Vv

where Z(t) = exp(— t2/2)/\/27r Substituting 3,6, and o? of (3.12) by the
estimates 3,6, and 62 obtained previously, we finally obtain an empirical
Bayes estimate of ¢;,

¢?j.EB — E(¢jl£j)|ﬁ:ﬂ“yé:‘§702:§2, .7 - ]-y 27 Ty Mm. (313)

Now, let’s introduce other previous estimate of ¢; for the first-order sta-
tionary RCAR model which can be compared with q&] rp 1n the next section.
It is shown in Li and Hui(1983) that for sufficiently large n ; & nonparametric
empirical Bayes estimate of ¢; is given by

(1 ¢2,60)(é — d155)
n;5%(¢)

éj.EBLH = (}gj.LSE + o J=12,---'m, (3.14)

where $2(¢) and ¢ are defined in (3.6) and (3. 7), respectively. The perfor-
mance of three estimates, ¢]EB, ¢;e8LH, and ¢] Lse is investigated by a
Monte Carlo study in the next section.

4. SIMULATION STUDY

In order to examine the sample behaviors of estimates, panel data of
time series {X;,},t = 1,2,---,n;, for each j = 1,2,---,m, were simulated
according to the model (2.1) with each values of (8, 6,0%) = (0.8, 0.15, 1.0),
(0.5, 0.25, 0.5), and (0.0, 0.35, 1.0). All experiments were accomplished
using 1000 repititions on samples with different lengths, i.e., (m,n) = (5,6),
(10,11), (20,21), (30,31), (50,51), (100, 101), and (300, 301), letting n; —
n for simplicity. All except the last observation from individual umts on
each sample are used for estimation and the last observation is remained to
be compared with the one-step ahead forecast obtained using the estimated
coefficients. The exact procedure by which data were generated is presented
in the Appendix.

Now, let’s discuss the estimation of model parameters, 3,6, and ¢2. First,
when |¢] se| > 1.0, ¢] tse 18 corrected by its boundary value. Second, the
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equation (3.2) or (3.5) with v = 4 is minimized about 3 and é according as
52(¢) < (0. 95)(0.3333 - - -) or S%(¢) > (0.95)(0.3333 - - -) by the BCONG sub-
routine of IMSL running on UNIX workstation, which minimizes a function of
two parameters subject to bounds on the parameters using a quasi-Newton
method and the first-derivatives of the function. Since this subroutine re-
quires starting values, a number of experiments were carried on some discrete
grids of (3, 6). As a result, we can know that different starting values have
little or no effect on minimizing the monotone log likelihood function.

In order to compare the estimates of parameters for various samples, (a)
the true parameter values in the model, (b) the sample means of the esti-
mates for the 1000 repititions, and (c) the sample standard deviation(s.d.)s
of the corresponding sample means are calculated and summarized in Table
4.1. Also, the number within (-) is the number of repititions that $2(¢) >
(0.95)(0.3333 - - -).

As for the models considered in this paper, we can see as follows: first,
most of true parameters fail to be included within two sample s.d.’s of the
corresponding sample means of estimates. But, the estimates of parameters
generally converge to their true parameter values and their biases for § and
o? consistently decrease with the increase of both m and n . Second, the
sample s.d.’s of the corresponding sample means consistently decrease as m
and n become larger at the same time. Third, in a number of experiments
for other models in addition to the models in this paper we can know that for
fixed 8 and o the proportion of out of range S2 (¢) increases as 8 is larger or
the sample size is smaller .

Next, let’s discuss the estimation of random coefficient ¢;. We obtained
three estimates: ¢J gp in (3.13), qﬁJ.EBLH in (3.14), and ¢J_L3E in (3.3). Now,
for the purpose of evaluating the performance of estimates, we computed two
criterion statistics used in Liu and Tiao(1980). One of two criterions is the
average squared deviation(ASD) between the estimate ¢ and the real value

¢,

1000 m
ASD(¢) = 100 ZZ(@,J»—@,J-)? (4.1)
i=1 j=1

where ¢, ; is a random coefficient for the jth individual unit on the ith repeti-
tion and qgi,j is an estimate of ¢; ;. Another is the average squared prediction
error(ASPE) between actual and one-step ahead prediction values under the
estimate 43 considered,
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1000 m

1 p 3
3 Z{Yum - xy (4.2)

ASPE
( lOOOm =1

where X ;;4 is an obselva,tion at time ¢ -+ 1 from the jth individual unit on

the ith repitition and XZ Jt = q&i,in'j,,, is an one-step ahead forcast at time ¢
for the jth individual unit on the ith repitition.

The results of (a) the ASDs and (b) the ASPIs recorded in Table 4.2
indicate that qgj_ g 1s better or not worse in terms of the ASD and the ASPE
than other estimates. Specially, for small samples of size (m,n) = (5,5),
(10, 10), (20,20) é; x5 performs better than other estimates do.

Table 4.1 Results of parameters estimaion on simulated samples.

m n ] § o? B I3 o2
{a) -0.8000 0.1500 1.0000
5 5 (b) -0.9018 0.4559 0.8260 (c) 0.0171 0.0119 0.0091 (127)
10 10 -0.8980 0.3163 0.9015 0.0130 0.0081 0.0043 (2)
20 20 -0.8329 0.2136 0.9515 0.0094 0.0045 0.0022 (0)
30 30 -0.8118 0.1838 0.9674 0.0077 0.0034 0.0015 (0)
40 40 -0.8084 0.1740 0.9749 0.0064 0.0029 0.0011 (0)
50 50 -0.7955 0.1670 0.9799 0.0059 0.0026 0.0009 (0)
100 100 -0.7948 0.1564 0.9898 0.0040 0.0017 0.0004 (0)
300 300 -0.7973 0.1503 0.9968 0.0020 0.0009 0.0001 (0)
(a) 0.5000 0.2500 0.5000
5 5 (b) 05868 05351 04125 (c) 0.0183 0.0129 0.0046 (212)
10 10 0.6005 0.4314 0.4525 0.0137 0.0118 0.0022 (38)
20 20 0.5556 0.3410 0.4742 0.0096 0.0089 0.0011 (5)
30 30 0.5239 0.2950 0.4829 0.0073 0.0062 0.0007 (1)
40 40 0.5110 0.2782 0.4868 0.0059 0.0050 0.0005 (0)
50 50 0.5057 0.2686 0.4895 0.0051 0.0042 0.0004 (0)
100 100 0.4984 0.2561 0.4948 0.0032 0.0024 0.0002 (0)
300 300 0.4995 0.2504 0.4983 0.0017 0.0012 0.0061 (0)

(a) 0.0000 0.3500 1.0000
5 5 (b) -0.0117 0.5742 0.8110 (c) 0.0201 0.0134 0.0089 (310)

10 10 -0.0135 0.5197 0.9089 0.0133 0.0131 0.0044 (125)
20 20 -0.0110 0.4462 0.9542 0.0076 0.0107 0.0022 (36)
30 30 -0.0009 0.4048 0.9668 0.0053 0.0088 0.0014 (16)
40 40 -0.0036 0.3928 0.9757 0.0043 0.0072 0.0011 (5)
50 50 -0.0047 0.3838 0.9810 0.0036 0.0066 0.0009 (2)
100 100 0.0022 0.3687 0.9906 0.0026 0.0042 0.0004 (0)
300 300 0.0005 0.3509 0.9966 0.0014 0.0018 0.0001 (0)

But, for the samples of larger size there are not significant differences
among three estimates from the ASD and the ASPE viewpoint. In compar-
ing the three estimates of random coeflicient in the light of the simulation
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experiment results ¢zp is better than other estimates. In conclusion, we can
recommend ¢z for a small sample.

Table 4.2 Results of empirical Bayes estimation on simulated samples.

m n ¢eB  YEBLH 9LSE $EB  PEBLH PLSE
(8, 6 &%) = (=0.800, 0.150, 1.000)
5 5 (a) 0110 0261 0215 (b) 1.112 1305 1.245

10 10 0.053 0.068 0.092 1.090 1.122  1.145
20 20 0.028 0.031  0.039 1.021 1.027  1.036
30 30 0.019 0.020 0.024 1.029 1.031 1.036
40 40 0.014 0.015 0.017 1.022 1.024 1.027
50 50 0.011 0.012 0.013 1.023 1.024 1.026
100 100 0.006 0.006 0.006 1.009 1.010 1.010
300 300 0.002 0.002 0.002 1.002 1.002 1.002

(B, 5, o%) = (0.500, 0.250, 0.500)
5 5 (a) 0134 0254 0.220 (b) 0571  0.647 0.643

10 10 0.070 0.081 0.091 0.554 0.565 0.572
20 20 0.037 0.039 0.043 0.524 0.525 0.528
30 30 0.025 0.025 0.027 0.521 0.522  0.523
40 40 0.019 0.019 0.020 0.512 0.513 0.513
30 50 0.015 0.015 0.016 0.509 0.510 0.510
100 100 0.007 0.007 0.008 0.505 0.505 0.505
300 300 0.002 0.002 0.002 0.503 0.503 0.503

(B, 5, o) = (0.000, 0.350, 1.000)
5 5 (a) 0152 0.295 0214 (b) 1.145 1344 1.274

10 10 0.078 0.088 0.090 1.117 1.141 1.153
20 20 0.041 0.042 0.043 1.047 1.051 1.054
30 30 0.027 0.028 0.028 1.039 1.040 1.041
40 40 0.020 0.020 0.021 1.019 1.019 1.020
50 50 0.016 0.016 0.016 1.017 1.018 1.018
100 100 0.008 0.008 0.008 1.015 1.015 1.015
300 300 0.003 0.003 0.003 1.001 1.001 1.001

It will be interesting to observe the sample behaviors of the estimates
according to several sizes, i.e. m = 5,15, 30, 50, 100, 300, of individual units
with fixed small sample size n = 8, 16, or 24, or vice versa, since the length
of panel data often is short in size n. Because of the space limited we present
the results of such simulations as previously conducted only for the model
with (3, 6,02) = (0.5,0.25,0.5) in Table 4.3-4.4.

Now we summarize the results as follows: first, the biases of the estimates
for 8 and 6 increase till the size m = 15 for n = 16 or n = 24 and m = 50
for n = 8. But they decrease with the increase of m since the size of m. As
the reason for these results, we can guess that 52 (¢3) also increases with the
increase of relatively small size m, since the estimates qgj ’s are very rough in

837
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Table 4.3 Results of parameters estimaion on samples simulated for the model with
parameter (8, 6,0%) = (0.500, 0.250, 0.500).

sample means sample s.d.’s of means
m n B 5 a? B 6 a?

5 8 0.548 0.400 0.438 0.016 0.014 0.004 (110)
15 8 0.653 0.524 0.443 0.014 0.013 0.002 (50)
30 8 0.654 0.543 0.442 0.012 0.012 0.001 (17)
50 8 0.660 0.556 0.442 0.011 0.011  0.001 (1)

100 8 0.627 0.517 0.440 0.008 0.008 0.001 (0)
300 8 0.576 0.469 0.441 0.004 0.004 0.000 (0)

5 16 0.529 0.293 0.467 0.013 0.012 0.002 (46)
15 16 0.571 0.368 0.470 0.011 0.011 0.001 (13)
30 16 0.538 0.348 0.470 0.009 0.008 0.001 (2)
50 16 0.515 0.326 0.469 0.007 0.006 0.001 (0)

100 16 0.491 0.305 0.469 0.004 0.003 0.001 (0)
300 16 0.496 0.293 0.469 0.002 0.002 0.000 (0)

5 24 0.516 0.274 0.479 0.012 0.010 0.002 (30)
15 24 0.568 0.338 0.479 0.011 0.009 0.001 (4)
30 24 0.524 0.303 0.480 0.008 0.007 0.001 (0)
50 24 0.507 0.291 0.479 0.006 0.005 0.001 (0)

100 24 0.496 0.277 0.479 0.004 0.003 0.000 (0)
300 24 0.498 0.269 0.480 0.002 0.001 0.000 (0)

Table 4.4 Results of empirical Bayes estimation on samples simulated for the model with
parameter (8, 8, 0%) = (0.500, 0.250, 0.500).

ASD ASPE
m n ¢ep  $EBLH PLSE $gp  SEBLH PLSE
5 8 0.091 0.151 0.121 0.566 0.608 0.593
15 8 0.083 0.097 0.121 0.541 0.558 0.572
30 8 0.081 0.091 0.122 0.551 0.567 0.584
50 8 0.079 0.089 0.121 0.542  0.559 0.577
100 8 0.079  0.088 0.121 0.548  0.564 0.584

300 8 0.079 0.088 0.121 0.548 0.564 0.584
5 16 0.049 0.068 0.054 0.529  0.544  0.536
15 16 0.045 0.048 0.054 0.534 0.536  0.542
30 16 0.045 0.047 0.055 0.529 0.532  0.538
50 16 0.045 0.047 0.055 0.529 0.533  0.538

100 16 0.045 0.046 0.055 0.525 0.528 0.534

300 16 0.044 0.046 0.054 0.528 0.531  0.536
5 24 0.032 0.039 0.034 0.532 0.538  0.534
15 24 0.031 0.032 0.034 0.520 0.522 0.524
30 24 0.031 0.032 0.035 0.515 0.517  0.519
50 24 0.031 0.032 0.034 0.516 0.518 0.519
100 24 0.030 0.031 0.034 0.518 0.520 0.521

300 24 0.030 0.031 0.034 0.518 0.519 0.521
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the samples of small size n. Second, it is shown that there are little differences
among the estimates of ¢? in spite of the increase of m with fixed n. Third,
in Table 4.4 </A>E g 1s better or not worse in terms of the ASD and the ASPE
than others. Specially, qSE g is superior to others for smaller sizes of m and
n. Fourth, the sample s.d.’s of the corresponding sample means and the
proportion of out of range S* (¢) generally decrease with the increase of m for
fixed n or vice versa.

5. APPLICATION

For a practical illustration, we used the annual average hourly earnings in
non-durable goods manufacturing of m = 14 metropolitan areas in California
from 1945 to 1977 studied in Liu and Tiao(1980).

Following after their job, we begin with the natural logarithm, {W;,} =
{In X;,}, of the original series {X;.} by the means of remedy for increasing
variance with time. Also, in order to obtain a stationary panel of time series
we find the difference series {Y;,} of W;,’s, where Y;, = W;, — W,,_;. The
difficulties in numerical optimization often occur when the data values are
very small. Thus, the series with which we finally deal is the standardized
series {Z;,} with Z;, = (Y;, — Y;)/S;, where Y; = 312, Y;,/(n; — 1) and
S; = \/Z?iz(yj,t —Y;)2/(n; — 1). Now, we construct our model as follows

Zj,t:¢ij,t—1+€j,t, j:1,2,"',14, t:1,2,---,nj. (51)

Applying the results in Section 3 to model (5.1), we compute such ASPEs
between actual and one-step ahead prediction values under three estimates,

¢;EB, PiEBLH, and ¢;.LSE, a8

ASPE(¢ =14 Z{W]H1 wiPy?, (5.2)

where Wj(j) =W +Y;+ $;7;,8; is an one-step ahead forcast of W;,,; at
time t.
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Table 5.1 Parameter estimates and average squared prediction errors(ASPE) in the
analyses of natural logarithms of average hourly earnings data.

~2

data B 8 4 PER PEBLH PLsE Pp
overall series(m=14)
1945-68 0.597 0.080 0.121 0.000266 0.000788 0.000337 0.000349
1945-69 0.536 0.040 0.116 0.000404 0.000503 0.000421 0.000425
1945-70 0.514 0.036 0.112 0.000400 0.000481 0.000417 0.000691
1945-71 0.500 0.028 0.114 0.000721 0.001055 0.000740 0.001016
1945-72 0.478 0.027 0.116 0.000405 0.000668 0.000408 0.000428
1945-73 0.438 0.035 0.112 0.000417 0.000661 0.000364 0.000550
1945-74 0.409 0.041 0.115 0.001479 0.001428 0.001508 0.001804
1945-75 0.486 0.045 0.141 0.001423 0.001515 0.001374 0.001493
1945-76 0.530 0.076 0.144 0.000766 0.001255 0.001171 0.000894
total ASPE 0.006281 0.008353 0.006741 0.007650
long series(m=—4)
1945-68 0.529 0.012 0.177 0.000134 0.000255 0.000105 0.000128
1945-69 0.496 0.018 0.171 0.000067 0.000065 0.000070 0.000235
1945-70 0.498 0.018 0.167 0.000193 0.000168 0.000211 0.000396
1945-71 0.515 0.014 0.172 0.000201 0.000214 0.000204 0.000287
1945-72 0.521 0.014 0.170 0.000086 0.000100 0.000080 0.000071
1945-73 0.505 0.016 0.164 0.000158 0.000154 0.000159 0.000196
1945-74 0.500 0.015 0.171 0.002177 0.002202 0.002161 0.002349
1945-75 0.523 0.018 0.212 0.000077 0.000082 0.000126 0.000097
1945-76 0.523 0.012 0.208 0.000127 0.000134 0.000138 0.000118
total ASPE 0.003220 0.003373 0.003256 0.003877
short series(m=10)
1945-68 0.694 0.137 0.053 0.000342 0.000691 0.000429 0.000438
1945-69 0.557 0.050 0.054 0.000543 0.000643 0.000561 0.000501
1945-70 0.523 0.044 0.058 0.000488 0.000554 0.000499 0.000809
1945-71 0.495 0.034 0.059 0.000928 0.001201 0.000955 0.001308
1945-72 0.461 0.031 0.068 0.000525 0.000752 0.000540 0.000571
1945-73 0.411 0.040 0.068 0.000499 0.000732 0.000446 0.000691
1945-74 0.372 0.046 0.070 0.001236 0.001179 0.001247 0.001586
1945-75 0.473 0.056 0.086 0.001943 0.002039 0.001873 0.002051
1945-76 0.560 0.057 0.096 0.001129 0.001658 0.001585 0.001204
total ASPE 0.007632 0.009450 0.008135 0.009159

When the prior distribution of ¢; is supposed to be a rescaled beta distri-
bution, Liu and Tiao(1980) computed the ASPEs using the Bayes estimate
¢A5j‘ p for three groups of data, i.e., the overall group(m=14) including all se-
ries, the long-series group(m=4) including series 1, 2, 5, 9, and the short-series
group(m=10) including series 3, 4, 6, 7, 8, 10, 11, 12, 13, and 14. Table 5.1
shows not only the estimates B , 3, 62 obtained by the estimation method in
Section 3 but also the ASPEs for one-step ahead forecast obtained using the
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estimates J)j,EB, qgj,EBLH, qgj_LSE, and the Bayes estimate qBB of Liu and Tiao,
respectively, for various time periods and three series groups.

We can observe that the ¢z generally gives smaller ASPEs than other
estimates for an overall group or a short-series group of which series are
relatively short in length. There is only a little difference among the ASPEs
of three ¢’s for a long-series group of which series are long in length as seen
in the previous simulation results.

6. CONCLUDING REMARKS

We have discussed the estimation of model parameters and random coef-
ficient in the first-order RCAR model where the prior distribution of random
coefficients is a truncated normal distribution in (—1, 1) for stationarity.

In this paper, the parameters are indirectly estimated using the estimate
é1s5. To directly obtain the MLEs of 3,6, and o2 we find the conditional
likelihood function L(B,6,0%X) given X;;,j = 1,2,...,m, which is more
convenient than the likelihood function in the random coefficient model, where

L(B,6,0°|X) = []f(zizziz, - rTimlzi1)

m 7

= ]:[Hf(mjtlz;t 1)
- 11

since the process of (2.1) is the first-order Markovian process. The monotone
log function of the likelihood (6.1) is given by

¢]m]t 1+€]t—$1t) (61)

||:j? i

L*(,6,0%X) = —2WnL(B,6,0%|X)— (D n; —m)In2n
j=1
o O (250 = Beje-1)?
= 1 ) : .
;tz n(o® + 623, 1)+§t2: TF 62,
—2ZZIH{¢>(c1 P(c2)}
j=1t=
-1-3

£2(3" 1 — m) 1n{<1><7-—)—<1>< =) (62)

i=1



542 Young Sook Son

where

o - 623, 1@;e + B0’z + |2jea|(0? + 623, )
|250-1]\/80%(0? + 622, _)) ’
6z?,t_1wj,t + ﬂazl’j,hl - |4L'j,t—1!(02 + 6$3,t—1)

|25 6-1] \/602 (o2 + 69;J2.,t_ 0

C2

The MLE of ¢% obtained by minimizing the function (6.2) is relatively
exact, but the MLEs of 8 and é show the results of blowing up. To rectify
the problem of blowing up the chi-square density is incorporated as the prior
density for 1/ with the likelihood function (6.1), that is,

1
6 5 tle

W} - L(B,6,0%|X). (6.3)
2

Lu (8,6,0%X) = {

The monotone log function of modified likelihood (6.3) is then as follows

m

L;M(ﬂ,é,aﬂi) = —2InLy(8,6,0%X) - (Zn] —m)In2x
j=1
—2m1n{r(g)2%}
= m(v—2)Ind+m/6+ L"(B,6,0%X). (6.4)

When 1/6 is distributed with x?(v), the degree of freedom v and the mode
M, of x*(v) is in the relation of M, = v — 2. In our tentative simulation we
can observe that the function (6.4) with » = (1/8) + 2 considerably exactly
produce the MLEs of 3, §, and o2. The problem of obtaining the exact MLEs
from (6.4) is finally to estimate relatively exactly initial value of §. This
problem remains to be solved.

A number of Monte Carlo experiments were carried to illustrate the pro-
cedures developed in our study. On conclusion, the results of the empirical
Bayes estimate ¢?E p are specially satisfactory on small samples. It is very
worth since the panel data of time series are generally short in length. Further
research into the exact estimation of model parameters should be preceded to
obtain an even better empirical Bayes estimate of random coefficient in the
truncated normal RCAR model.
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APPENDIX

Data used in the simulation study are generated using the following pro-
cedures. Note that all subroutines used here are those of IMSL running on
UNIX workstation. For each j:

1. The standard normal distributed random errors, «;,’s, were generated

by the RNNOA subroutine.

2. To generate ¢;’s, independent of ¢;,’s, from a truncated normal distri-
bution N (3,6) in (—1, 1) we obtain the following algorithm using the
rejection method (see, Ross(1990)):

STEP 1: Generate independent pseudo random numbers, U; and U,
which are uniformly distributed in the interval (0,1) using the
RNUN subroutine.

STEP 2: Set Y = 2U; — 1.

STEP 3: If U; < exp {—— (y;f)z }, set ¢; = Y, otherwise return to Step
1.

3. Let X;; = ¢;, in order to obtain an initial value X;; of {Xj,}.

4. Finally, X2, X;3," "+, X, are recursively generated as soon as ¢; and
gt t =1,2,--+,n;, are determined.
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