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Abstract

In this paper, we introduce a new concept of partial ordering which
permits us to compare pairs of the dependence structures of a new
hitting times for POD multivariate vector process of interest as to
their degree of PO D-ness. We show that PO D ordering is closed under
convolution, limit in distribution, compound distribution, mixture of
a certain type and convex combination. Finally, we present several
examples of POD ordering processes.
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1. INTRODUCTION

Lehmann[11] introduced the concepts of positive(negative) dependence
together with some other dependent concepts. Since then, a great many
papers have been studied on the subject and its extensions and numerous
multivariate inequalities have been obtained. In other words, a great many
papers have been devoted to various generalizations of Lehmann’s concepts to
finite-dimensional distributions. For references of available results, see Kar-
lin and Rinott[10], Ebrahimi and Ghosh[7], Shaked[14], Sampson[13], and
Baek[2]. Whereas a number of dependence notions exist for multivariate pro-
cesses (see Friday[9]), recently, Ebrahimi[6] introduced some new positively
orthant dependence (POD) concepts in terms of the finite-dimensional dis-
tributions of the hitting times of the components of a vector process. These
concepts not only help us to understand structure of functionals such as hit-
ting times of the given vector process but also have the potentional for new
and useful inequalities for stochastic processes. Also, these concepts is a form
of qualitative multivariate dependence which has led to many applications
in applied probability, reliability, and statistical inference such as analysis of
variance, multivariate tests of hypothesis, sequential testing. Like this, since
POD processes is a qualitative multivariate form of dependence, it would be
seen difficult, or impossible to compare different pairs of stochastic processes
as to their “degree of processes”. Therefore, the main goal of this paper is to
develop a partial ordering which permits us to compare pairs of the depen-
dence structures of a new hitting times for PO D multivariate vector process
of interest as to their degree of PO D-ness. In section 2, we list some of def-
initions and notations for POD ordering processes. Next in section 3, we
prove useful closure properties of the POD ordering. We show that POD
ordering is closed under convolution, limit in distribution, compound distri-
bution, mixture of a certain type, transformations of a stochastic processes
by increasing functions, and convex combination. Finally in section 4, we
present several examples of hitting times possessing various of PO D ordering
processes.

2. PRELIMINARIES

First, in this section, we present notations and basic facts used in the
sequeal. In what follows ‘increasing’ means non-decreasing and ‘decreas-
ing’ means non-increasing. Suppose that we are given a n-dimensional(n >
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2) stochastic vector processes {(Xi1(t),- -, Xn1(t))|t = 0} and {(X12(2),---,
X.2(t))|t > 0}, respectively. The state space of (Xy1(t), -, Xni(t)) and
(X12(t),- -+, Xn2(t)) will be taken to be a subset, F = Fy X Ey x --- x E,, of
n-dimensional Euclidean space R™, respectively.

For any states a; € E;,t = 1,2,---,n,j = 1,2, we define the random times
as follows.

T,-]-(ai) = inf {th,'j(t) Z (11',0 S t S OO} . (21)

In other words, T:;(a;) is the hitting times that the ijth component
process X;;(t) reaches or goes above a; (see (6)). If we base the dependence
between multivariate processes on the dependence of their hitting times, we
then have the following definitions.

Definition 1.(6) The stochastic process {(X12(t), -+, Xn2(t))|t > 0} is said
to be positively upper orthant dependent (PUOD) if

(Tm(ai) > ti)) Z ﬁ P(T,Q(a,) > t,') (22)

1 =1

" )=

P(A

1

il

forallt; > 0,a; € E;,0=1,2,---,n.

Definition 2.(6) The stochastic process {(Xi2(), - , Xno(2))]t > 0} is said
to be positively lower orthant dependent (PLOD) if

3.

PV (Tala) < 1) 2 [T P(Tala) < 1) (2.3)

=1

forallt; >0,a; € E;;0=1,2,---,n.

We say that the stochastic process {(X12(t), - , Xna(t))|t > 0} is said to
be positively orthant dependent (POD) if they satisfy both (2.2) and (2.3).

Definition 3. The stochastic process {(Xj2(t), -, Xn2(t))|t > 0} is said
to be associated if Cov(f(Ti2(ar), -+, Thalan)), 9(T1z(ar), - yThalan))) 2 0
for all increasing functions f and g for which the covariance exists and a; €
Eii=1,2,-n.

Before we state more definitions, we let 3 = B(Fy,- -, F,,) denote the class
of multivariate distribution function H having specified marginal distribution
functions Fy, Fy, - - -, and Fy,, where Fy, Fy,- -+, and F, are nondegenerate, and
we then consider 87, a subclass of 3, defined by
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ﬂ+:{H(t1”tn)'HISP0D y H(tl,oo’...’oo):Fl(tl)’...7
H(oo, -, 00,1,) = Fy(t,)}.

Let Hy, H;, H; and H, belong to #t and use the notation Hy(ty,---,
P(Tll(aj) >ty T(an) > t), Hy(ty, -+, 1,) = P(T15(ay) >ty Ty

tn), Ha(ty, -+ tn) = P(Ty(ay) < ty,--- yTai(an) < o), Ha(ty, -+ t,) =
P(Tyz(ay) <ty -, Trz(an) < ty).

Definition 4. The multivariate distribution H, is said to be more positively
upper orthant dependent than H; if

H?(tl’t27”'atn) Zgl(t17t27“'7tn) (24)
forall t; > 0,2 =1,2,---,n. We write H, > (PUOD)H,

Definition 5. The multivariate distribution H, is said to be more positively
lower orthant dependent than Hj if

H4(tl7t2""atn) Zg3(tl7t27”'7tn) (25)
forallt; >0,:=1,2,---,n. We write Hy > (PLOD)H;.

Moreover, we say that the stochastic processes {(X12(2), - -
0} is said to be more positively orthant dependent than {(X;; (t), Xn1(t))]t
> 0} if they satisfy both (2.4) and (2.5). We write (X15(2), -+, Xna t) >
(POD)Xn(1),- -+, Xui (1))

3. CLOSURE PROPERTIES OF (3, > (POD))

In this section, we establish preservation of the POD ordering under con-
volution, limit in distribution, compound distribution, mixture of a certain
type, transformations of stochastic processes by increasing functions and con-
vex combination. First note that (X]Q( ), oy Xaa(t)) > (POD) (X1 (),

-+, Xn1(t)) if and only if E(f(le(al) 5 Toa(an))9(Thz(ar), - -, Tox(an))) 2
E(f(Tyi(aq),- -, Tni(an))g(Thi(ay), - - -, T,1(ay))) for all increasing functions
f and g.

In below, we show that the ordering is preserved under convolution. We

need the following Lemma 1 which is of independent interest.
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Lemma 1. Let (a) {(X1;(¢), -, X1 (t)) |t >0} and {(X12(2), -, Xsa(t))

| t > 0} have distributions Hq(H3) and Hy(Hy), where Hy(Hjy), Hy(Hy) be-

long to 3%, respectively, (b) {(X12(2), -+, Xu2(t)) | ¢t > 0} > (POD) {(X11(1),
L X ()t >0}, and (¢) (Zi(t),-- -, Zu(t)) with an arbitrary POD dis-

tribution function H independent of both of {(X(¢), -, X1 () | t > 0}

and {(X15(8), -, Xo2(t)|t > 0}. Then (Xq2(t)+ Z1(t), -, Xna(t) + Z.(2)) >

(POD)Xor(1) + Za(0), -+, Xuar(£) + Za(t))

Proof. The proof will be given for the case n = 2. For the general n, the
proof is similar. First we will show that (X;,(¢) + Zi(¢), X22(t) + Z2(1)) 1s
PQD.
Cov[f(Xi2(t) + Zi(1)), g(Xa2(t) + Za(1))]
= Cov[ E{f(X12(t) + Z1(t)|(Z1(t), Z2(2)) }
E{g(Xa(t) + Z2(t))(Z1(1), Z2(1))} ]
+E[Cov{f(X12(t) + Z1(2)), 9(X22( )+ Z2(1)) (21 (1), Za(1))].
Note that the first and second terms are greater than or equal to zero for any
increasing functions f and g. Thus (X12(t) + Z1(¢), X22(t) + Z2(t)) is PQD.
Similarly we can show that (X,(¢) + Z1(t), X21(¢) + Z2(t)) is also PQD.
Next, we will show that (X12(8)+ Z1(%), Xo2(t)+ Z2(2)) > (PQD)( X1 (t)+
Zi(t), X21(1)+ Za(1)), e E(f(Xn2(t)+21(2))g(X22(t) +22(2))) 2 E(f(Xni(2)
+7Z,())g(X21(t) + Z2(t))) for any increasing functions f and g. Now,
E(f( X12(t) + Z1(1))g(X22(t) + Z2(2)))
E(E(f(X12(t) + Z1(1))g(Xna(t) + Z2(1))]
= E(E( (X12(t) + Z1(1))g(X22(t) + Z5(1)))))
> E(E(f(Xu(t) + Z:1(1)g(Xa(t) + 22(1))))
= E(f(Xu(t) + Z:(1)g(Xa(t) + Za(1))).

Theorem 1. Suppose that the stochastic process (a) {(X12(t), -+, Xn2(?))
1620} > (POD){(Xu(t), > Xua ()] ¢ > 0}, (b) {(Vaa(t)s- -+, Yia(t)) | ¢

> 0} > (POD) {(Yau(t), 1 Yau (1)) | £ > 0, and () {(Xun(t), > Xoalt)) |

t >0} and {(Yi2(?),: -+, Ya2(t))|t > 0} are independent and have increasing
sample paths, {(X11(t), -+, Xn ()|t > 0} and {(Y11(t), - -, Ya1(t))|t > 0} are
independent and have increasing sample paths. Then {(X12(t) + Y12(t), - -,
Xealt) + Yaa0)]t 2 0} > (POD) {(Xua(t) + Yir(1), -+ Xoa (£) + Y (1)) ]t > 0}

Proof. By assumption, (X12(t), -, Xn2(t)) > (POD) X11(t), -, Xn1(2)).
Specifying (Z(t),- -+, Z.(t)) to be (Y12(¢), - -, Ya2(t)), we apply Lemma 1 to
obtain

g (Z1(t), Z2(t)))
Mgl
)
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(X12(t) + }/12(”7 e 7Xn2(t) + Yn2(t))
> (POD)(X11(t) 4+ Yi2(8),- -, Xoa (8) + Yia()).  (3.1)

Next, we use the assumption (Y12(2), -+, Yo2(t)) > (POD)(Y1, (1), -, Yo (t)),
specifying (Z1(t),- -+, Z,(t)) to be (X31(t),---, Xn1(t)), and again use Lemma
1 yielding

(Xll(t) + }/12(t)7 e a)('nl(t) + Yn?(t))
> (POD)(X0i(t) + Yi(t), o Xea () + Yar (1)) (3.2)

By combining (3.1) and (3.2),

(X12(t)+}/12(t) 7Xn2( )+Yn2( ))
> (POD)( X1 (t) + Ya2(2), -, X
> (POD)(X11(t) + Y1 (1), -+, Xna (B) + Yaa (2))-

Thus,

(X12(t) + Yaa(2), -+, Xna(t) + Yoot ))
> (POD)(XH( Y+ Yii(t), -, Xna(2) + Y (2)).

Thus we complete the proof.

The next theorem demonstrates that, under suitable conditions, limits of
more POD processes inherit the more POD structure.

Theorem 2. Let (a) {(Xn1(t), -, Xnk(t))|t = 0} and {(Yaa(t),- -, Yar(2)) |
t > 0}, be a sequence of k-dimensional with distribution H; and Hj, respec-
tively for every n. (b) (Xn1(t), -+, Xuk(2)) > (POD) (Yo (2), - - -, Yar(t)) for
every n, ( ) H, -5 H where H is the distribution function of a processes
(X1(t), -, Xp(t)) and H, = H' where H’ is the distribution function of a
processes (Vi(t), -+, Vilt)), (d) {(Xua(t), -+, Xoh(t )12 0}, (¥l

(t)|t = 0}, {(Xl(t), o Xe(B)]t > 0} and {( Yl( ) Yi(D)]t >0} have all
sample paths and they are right continuous on [0, oo) with finite left limits

at all #. Then (X,(¢), -, Xx(t)) > (POD)(Yi(t), -, Yi(t)).

Proof. Denote by C(H) and C(H’) the sets of continuity points of H
and H’', respectively. Let D = C(H) N C(H'). It follows from our as-
sumption that H(ty,ty, -+, tx) > H'(t1,t0, -, tg) for all (t1,t9,---,tk) € D.
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Since D is a dense set in RF, H > (POD)H' ie. (Xi(t), --,Xk(t)) >
(POD)(YA(1),- -+, Yi(t))-

The following theorem is another application of Theorem 2 which is very
important in recognizing more POD in compound distributions which arise
naturally in stochastic processes.

Theorem 3. Let Z;5(t) = Ej\](l) Y0 =1,2,---,nand Z;(t) = Zé\[:(i) Xij,1=
1,2,--,m, (a) (Y1, -, Ya1), (Y2, -, nz), .- are independent random pro-
cesses, (b) (X1, - ,an), (X1, -+, Xn2), -+ are independent random pro-
cesses, (¢) (Yyi, -+, Yni) > (POD)(X1yi,- -+, Xni)yi = 1,2,- -~ and (d) N(¢) be
a Poisson process which is independent of (Yy;,---,Yy:) and (Xus, - - s Xni)s
i=1,2,---. Then

N(t)
Zlg(t Z}/l],"' n2 ): ZYTL])
1=1
N(t)
> (POD) Z11 Z Xl;, e nl( ) - XnJ)
7=1

Proof. We will show that the more PLOD case is proved. Let T;;(a;) be the
hitting times of Z;;(t),7 =1,2,---,n,7 = 1,2. Then

P(Tia(a1) < tyy -+, Tha(an) < 1)

N(s) N{(s)
:P(Zy'ljzalat1§3<oov ZYj?_an,tnS8<OO)

j=1

N(t1) N(tn)

ZYUZ(Ila”‘aZYanan)

7=1

o0 [>9) l In
11=0 1,=0 71=1 j

IV
Nk
m

II
=}

il

=0 7=1 =1
N(tr) N(tn)
:P Z )(1j Z Ay, Z ‘Xn] Z an)

i=1

:P(Tll(al) <ty Tnl( )<t )

Similarly, the more PUOD case is proved.

351

a)

I
P(N(tl) = lla‘ ) 7]\/(tn) - ln)P(Z Xl] Z ay, - ZXn] Z an)
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Our next result deals with the preservation of the POD ordering under
mixture. In order to motivate our definition of a subclass of beta™ in which
the POD ordering is preserved under mixture we need a definition and a
similar result of Ebrahimi and Ghosh|[7].

Definition 6. A stochastic process { X,5(¢)|t > 0} is stochastically increasing
(SI) in {Xq12(t)|t 2 0} if E(f(T22(as))|T12(a1) = t) is increasing in #; for all
a; € F;,v = 1,2, and real valued function f.

Proposition 1. Let {(Xi2(t), -+, Xu2(¢))]t > 0} given A, be conditionally
POD processes, and {Xj,(t)|t > 0} be stochastically increasing (SI) in A for
t=1,2,---,n. Then {(Xi12(t), -, Xn2(¢))|t > 0} are POD processes.

We may now define the class 3 b

B = {H,\|H(t),00,---,00|\) = Fy(t1|A), -+, H(oo, -+, 00,t,|A)
= Fo.(t.|A),Hy\ | Xis POD, and Fy,---,F, are ST in A }.

Now consider (8},> (POD)). The following theorem shows that if two
elements of A are ordered according to > (POD), then after mixing A, the
resulting element in 5% preserves the same order.

Proposition 2. Let (X12(t), -+, Xn2(¢))|A and (X11(¢), -+, Xn1(t))|) belong
to AF, and (X12(t), -, Xp2(t))|A > (POD)(Xq1(2), - - - ,Xn (t))|A for all A.
Then, unconditionally, (X2(t), - -, Xn2(t)), (Xn( )s+ -+, Xn1(t)) belong to 8+
and (Xiz(t), -+, Xna(2)) > (POD)(Xna(t), -+, X (2 ))

Proof. From the Proposition 1, (X5(¢), - nz(t)) and (Xq11(¢), -, X (2))
are POD. Now,

E(f(Tia(ar), -+, Tra(a ))Q(le(al)a"' Tr2(az)))
= Ex(E(f(Tha(ar), -, Trz(an))g(Tiz(ar), - -5 Tz(an)))|A))
>EA( (f (Tll(al) , Tni(an))g(Tii(ar), - -+, Tri(an)))| M)
E(f(Tu(a1),- (an))g Ti(ar), -+, Thi(an))).

The inequality comes from the assumption that
(X12(t), - -+, Xn2(t))|A > (POD)(Xn(t), -+, Xui(2)). | A

for all A.

Theorem 4. Let (a) {(Xi(t), -, Xu(t))|t > 0} and {(Yi(¢),- -, Yie(t))|t >

0} be a sequence of k -variate processes with random increasing sample paths,
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respectively ¢ = 1,2,---,n, (b) (Xu(t), -, Xi(t)) > (POD)(Y;(t), -+, Yie(t))
foreach ¢t = 1,2,---,n, (¢) g; : R* - R,j = 1,2,---, k are increasing func-
tions in each of their arguments when all other arguments are fixed. Then
the processes '

Yi(t) = g;(Xa;(), -+, Xnj (1)) > (POD)Z;(t) = g;(y1;(1), - -, Yai(2))
for y=1,2,-- k.
We now turn our attention to a simple but important property of the class
B*.
Result 1. The class
Bt ={H | H(t, - ,t,) is POD, H(t,00,---,00) = Fy(t1),
) H(OO,"',OO,tn) = Fn(tn)}

1s convex.

Proof. Let Hy, H, € 8t and for « € (0,1),H = aH; + (1 — a)H,. Then we
will show that H is convex combination of H; and H,. Since each of the H,

and H, € %,
Py(Tia(ar) > ty, -+, Thalan) > t,)
= aPy, (T1z(a1) > t1, -+, Th2(ay) > t,)
+(1 — @) Py, (Tha(ar) > t1, -+, Tha(an) > t,)
> aPy(Tiz(ar) > t1) - - Pu(Tha(an) > t,)
+(1 — @) Pu(Tia(ar) > t1) - - Pu(Tra(ayn) > t,)
= Py(Tia(ar) > t) - Pu(Toa(an) > tn). (3.3)

Hence H is PUOD. The proof of PLOD is similar to the proof of PUOD.

Moreover,

H(co,- - ,oc;,tn) = aFy(ty) + (1 — @) Fu(t,) = Fo(ty).  (3.4)

It follows from (3.3), (3.4) that H € 8. Thus 87 is convex.
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4. EXAMPLES

Example 1. Consider a multivariate processes {(X,;, Yn1,Zn1)|n > 1},
{(an,Ynz, Zn2)|n > 1} such that (4X117)/i17le)v(XZh)/Zl,ZZl)a -+ are inde-
pendent and (X1iq, Y12, Z12), (Xa2, Y22, Z92), -+ are independent processes.
Then it is easy to check that {(Xnz, Ya2, Zp2)in > 1} > (PODY{(Xn1, Yn1, Zn1)
|n > 1} whenever (X;3, Yy, Zi2) > (POD)(X;1,Y, Z;1), for each ¢ = 1,2, - -

Example 2. Consider a system with components which is subjected to
shocks. Let N(t) be the number of shocks received by time ¢ and {(Xy, Yz, Si)
| k=1,2,---} and {(X},Y/,S;) | k=1,2,---} are sequence of damages to
components 1,2,--- 5 and 6 by shock k, respectively. Define the compound
Poisson processes by Zn(t) = N(t Xk, Zw(t) = EN(t Xk, Za(t) = N(t) 1YL,
Zy(t) = ij:(? Yi, Z31(t) = Ek:l S,'c, Zs3o(t) = Zk:l Sy are the total damages
to components 1,2,---,5 and 6 by time ¢, respectively. Then we obtain
using Theorem 3 that (Z12(t), Z22(t), Z32(t)) > (POD)(Z11(t), Za1(t), Z31(t))
for every t > 0, whenever (X,,Y;,5;) > (POD)(X],Y/,S!), for each i =
1,2,3,---.

Example 3. Consider a parallel system with 2n components. Assume that
the :th component fails if the total damages to the component exceeds a
threshold a;,2 = 1,2,---,n. Let X;;(¢t) be the total damages to the ijth
component at time ¢, z = 1,2,---,n, 7 = 1,2 and (X12(2), -, Xna(t)) >
(POD)(X11(t), - m(t ). Then, the life time of the system is given by
the random Varlable T = max1<l<nTZ]( a;), where T;;(a;) is the hitting time
defined in (2.1),7=1,2,---,n,j = 1,2. Hence, we get the useful bound

P(maxlsisnﬂg(ai) < t) 2 P(T]](al) < t,' i ,Tnl(an) < t),

for all £ > 0. Similar bounds can be obtained for series system.

Example 4. Consider the following stress-strength model for 2n systems.
Let the Z;;(t),: = 1,2,---,n, 7 = 1,2, be the strength of :jth systems at
time t, respectively. We will assume that the 2n systems receive shocks
from a common source. Using a cumulative damage shock model(see Bar-
low and Proschan(1975)), we now let N(¢) be the number of shocks occur-
ing by time ¢ and U, be i.i.d. positive random variables denoting the dam-
age to either system due to the kth shock, ¥ = 1,2,---. Hence, the stress
experienced by either system at time ¢ is given by the processes X;;(t) =
Ek 1) U, 2=1,2,---,n, 7 =1,2. Using the Example 2, we can obtain that
(Xq2(t),- -+, Xo2(t)) > (POD ) X11(t), - -+, X1 (t)). Assume that (Z15(8), -+,
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Zna(t)) > (POD) (Z1y(t), -+, Zn(t)) such that (Z11(t), -, Zn(t)), and
(Zyo(t), -+, Zna(t)) are independent processes with decreasing sample paths
and that (Zn(t), -, Zn(t)), (Zya(t), -+, Zna(t)) and X(t),0 = 1,2,--,
n,j = 1,2, are independent processes. Then we obtain using Theorem 1 that
(X12(t) = Zia(t), -+, Xua(t) = Zia(t)) > (POD)(Xur(t) = Zua(2), -+, X (2) =
Zn.1(t)).  Consequently, the life times of the systems, namely, T5(0) =
inf{t | Xio(t) — Ziz(t) > 0} are more POD random variables than Th(0) =
inf{t|Xn(t) — Za(t) 20},:=1,2,---,n, respectively. Useful bounds on the
joint survival of 2n dependent systems are therefore given by (T52(0) > ti,2 =
1,2,--+,n) > (POD)(Tu(0) > t;,i =1,2,---,n).
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