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Bayes Factor for Change-point Problem
with Conjugate Prior

Younshik Chung' and Dipak K. Dey?

Abstract

The Bayes factor provides a possible hierarchical Bayesian approach
for studying the change point problems. A hypothesis for testing
change versus no change is considered using predictive distributions.
When the underlying distribution is in one-parameter exponential fam-
ily with conjugate priors, Bayes factors are investigated to the hypoth-
esis above. Finally one example is provided.
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1. INTRODUCTION

Given a sequence of random variables, suppose at some unknown point in
the sequence the process governing their probability distribution changes, and
consider the problem of detecting the change inference concerning the change
point. There is enormous literature on this and related problems for differ-
ent types of statistical models both in frequentist and Bayesian literature.
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Smith(1975) presents the Bayesian formulation for a finite sequence of inde-
pendent observations and Carlin et. al(1992) present a hierarchical Bayesian
analysis to this problem using Gibbs sampler. Frequentist approaches are
studied in Hinkley(1970), Siegmund(1986) and Wolfe and Schechtman(1984).
Zacks(1983) gives an extremely useful review on classical and Bayesian ap-
proach on this topic. Our goal is not only on a Bayesian parametric approach
but also considering it as a model selection problem. It is considered that
problem of comparing the change point model with one where there is no
change. This approach was first considered in Raftery and Akman(1986) in
the context of Poisson process. In this paper we consider the use of Bayes
factor to detect the changes. We assume that the underlying probability func-
tion arises from one-parameter exponential family. It follows that the Bayes
factors are expressible in terms of convex combination of Bayes factor for the
independent problem of deciding change at any given sample point versus
no change at that point. Thus, a graphical display of Bayes factor at each
sample point captures whether there is any change or not. As a consequence
an estimate of the change point is obtained where the individual Bayes factor
attains maximum which is compared with Pettit and Young(1990)’s measure
ks in (4.1). In section 2, we present a semi-hierarchical Bayesian formulation
of the problem using predictive distribution. Secton 3 is devoted the Bayes
factor calculation for one-parameter exponential family models. Section 4
investigates measuring the effect of observations on Bayes factor in our form.
Finally, in section 5 the method is applied to determine the change point of
British Coal-mining disaster data.

2. HIERARCHICAL BAYESIAN FORMULATION

In this section, we consider that the underlying distribution is in the one-
parameter exponential family as follows;

f(z]|0) = exp{0z — M(8)}t(z). (2.1)

Suppose that X;,..., X,, is a random sample from the distribution (2.1). If
there is any change in the distributions of X;’s, we assume that for some r with

1<r<n,X, -,X, is arandom sample from f(z|6;) and X, 41,---, X, is
a random sample from f(z|6,) where 6; # 6. On the other hand if there is
no change in distributions of X;’s, then Xy, -+, X, is a random sample from

f(z]6;). Thus, the parameter space under consideration is
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{(01,85,7) : 1 <r <n—1}U{(0;,n)}.

Assume that given a fixed r < n—1, 8; and 0, are independent and having
prior distribution conjugate to (2.1) and for » = 1, #; has a conjugate prior.
Following Diaconis and Ylvisaker(1979), the form of the prior conjugate to
(2.1) is given as

50 l—«a

Tas(0) = Cla, Blexp [ M(H)} (2.2)

where M () is a known function.
We further assume a prior distribution is given by

flr=j|P] = H PI[T il (2.3)

where P = (Py,...,P,)and P, >0,3" P, =1
By hierarchical structure, assume that at the third stage, the prior of P
is distributed as Dirichlet as follows;

fP)y=m(ly,...,1 HPl ! (2.4)

where m(ly,... 1) = {1, PF~1dP.
We also assume that the prior on r is independent of that of 8, and 8,.
Thus, the likelihood and prior specification reduces to

flz1,...,2,|01,02,7) = exp {01 in —rM(6,)
=1

ﬁ t(z

1=1

+0, i iEi—(n“T)M(ez)}

i=r+1

and

7T(91, 02’ T) = ﬂ-al-ﬂl(el)ﬂ-az,ﬁz(BZ) / P, - m(ll; ey ln) H Pill_ldP
i=1

7r011751(01)77_02,)@2(02)”1(11) R ln)
m(ll, cey lr—-h l.,- -+ 1, lr_*.], sy ln)
= 77011,51(91)#012,&(02)777‘7"

379
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where m, = oy for r = n,

m(ll,...,lr_l,lr+1,lr+1 ..... n

n

f(z1,...,z,]01,7 =n) =exp 91}5%‘ —nM(6,) Ht(a:i)

i=1 i=1
and
7T((91, n) = Moy, (01) “Mn .

3. BAYESIAN MODEL CHOICE

Suppose that we are interested in comparing two models My and M;. The
formal Bayesian model choice procedure goes as follows. Let w; be the prior
probability of M;, : = 0,1 and let f(z|M;) be the predictive distribution for
model M;, i.e.

f(a:[Ml):/f(x|0,,M1)7r(01|M1)d91 .
If z is the observed data, then we choose the model yielding the larger

w; f(z|M;). Often we set w; = 1 and compute the Bayes factor (or My with
respect to M)

pr = L) (3.1)

flz|My)

Jeffreys’(1961) suggests interpretive ranges for the Bayes factor as follows:

Table 1. Scale of evidence for assessing BF

Range Evidence

1< BF Supports M,

1072 < BF < 1 Slight evidence against M
10! < BF <1072 Moderate evidence against Moy
1072 < BF < 107! Strong evidence against Mg
BF <1072 Decisive evidence against M,

In this paper, we consider the problem of testing for a change as one com-
paring the change point model(M,) with one(M;) which assumes no change.
We introduce the following notations:

ST:iX,', T, = E X, forl<r<n .
1=1

i=r+1
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Obviously for 7 = n, T,, = 0. First note that

f(l?]Mo) = f(xlvm% e 7$n|Cha‘nge)

flzr, 20, 2,1 7 < n)
- fA<r<n)
S (e, xg, 0, 20001,05,1 < < n)w(0,0;,1 < r < n)dbdb,
B f(1 <r <n)

I fla,xa, e 20|61, 00, 7) T (01, 05, 7) dby dB,
fA<r<n-1)

( (ar, By)C (s, B2) E //[ecvp (5 +ﬁ1)91

! +r)M(01)+<T+52>

- (=
-

1“(12

+ (0= 1)) M(0,)

(&)
-1

x 1;[1 (z; d91d92> (2 mJ) . (3.2)

Similarly, we can get

f(z|My) = f(z1,--,zs|no change)

= C(al,ﬁl)/exp{<5 + ﬂl) 0,

_<1_1+n>M(01}Ht . (3.3)

(03]

Combining (3.2) and (3.3), we get the following expression for Bayes factor
for change versus no changes as

BF = Z Z" F(r), (3.4)

where

B (//exp{(5r+ %)01 B (1 ;10[1 M)+ (T i BZ) v

_ (1;2a2+(n—r)) M(02)} dby b, ) (//exp{(s +ﬁ‘>01
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B (l_al—i-n)M(Gl) &92 l—w

851

2 M(&z)} d6, d92> _

184/

since

1 —
Claz, o)™ = [ eap (52 - M(92)> db,.
2
Note that from (3.3) BF(r) itself is the Bayes factor for the independent
problem of deciding “change at r” versus “no change at +”. Also the overall
Bayes factor is a convex combination of such individual Bayes factors. This
Bayes factor indicates only whether the change happens or not.

3.1. Normal Distributions

Assume that Xi,---, X, is a random sample from Normal distribution
with unknown mean #; and known variance o? and Xr41,° -+, X, is random
sample from Normal distribution with unknown mean 6, and known variance
o®. Without loss of generality assume that 62 = 1. Also under conjugacy
assume 0; ~ N(u;, 7?) independently for ¢ = 1,2 and all hyperparameters are

known. Then defining

A = (B b (TS Gt ),
r= 24+ r “*Py T4 8+ n
and
72 1 1 (T + #)? pl
B = 2 2 — —7-2___2
(r) (7'22—|—n—r) exp{2 24n—r 7'22)}’

1t can be shown that the Bayes factor for change versus no change is given as

BF = E A(r)B(r). (3.5)
1 m;
Again the Bayes factor for change at r versus no change is given BF(r) =
A(r)B(r) and the overall Bayes factor is convex combination of BF(r).

3.2. Poisson Distribution

Assume that Xj,---, X, is a random sample from Poisson with mean ),
and X,44,---, X, is random sample from Poisson with mean A,. Also assume
Ai ~ Gam(a;, b;) independently for i = 1,2. That is, p(\) = r(l)ba A*=Vexp{—2}.
Let 8; = log A; for « = 1,2. Then
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z:: oo ———BF(r) (3.6)

—1
where

by

Sn+a1
BF(r) _ (E F(ST + al)F(TT + ag)(nbl + 1)

) F(az)F(Sn + al)(rbl -+ 1)5r+al((n _ T-)b2 + I)Tr-}—ag '

(3.7)

4. INFLUENCE ON BAYES FACTOR

If the change is happened, we are interested in which observation is seri-
ously effected to that change. So, to measure the effect on the Bayes factor
of observation d, Pettit and Young(1990) suggested the quantity k; defined
by

ky = logioBF — log;oBF¥ , (4.1)

where BF(9) is the Bayes factor excluding observation d. In different way,

f(X|Mo) log f(X (@[ Mo)
f(X|My) f(X(a| M)
. F(X[Mo) ~ log f(X|M)
f( Xy Mo) f(X@)|My)

where X is all the data and X4 is the all the data excluding observation d.

This k4 1s expressed as the difference in the logarithms of the conditional
predictive ordinates(CPO) for the two models. Pettit(1990) mentioned that
the CPO is a measure to detect surprising observations. Thus large values
of |ks| indicate that such observation d has a large influence on the Bayes
factor. In order to calculate kg in (4.1), first compute BF(9) as follows; For
convenience, let BF(0) = 0,

(4 _ f(X()| Mo)
e f(X@)| M) (43)

= Y —"  BFY)+ Z e BF(r)

r<d > ko1 k#d Ttk r>d Ek 1 kd Tk
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where let
Sn = ZXI ) TTl = E Xi - ‘Yd
i=1 i=r+1
:ZXi“)(d ; TT2: Z Xi’ S;L:ZX_
pt i=r+1 =1
and
(d)
@ (r) = BEN
BFD
for:=1,2,
1—
F0) = [ [emntsn+ 2o+ (1t B0, - 20 4y
1
1 _
—(— o DIM(6:) dos db,  (4.4)
2
and

)M (6:)

BFD //e:vp{s + )91—(

ﬁez 1—02

84/ (89

M(Gg)} d6, db, .

4.1. Normal Distributions

Assume that X,,---, X, is a random sample from Normal distribution
with unknown mean 6; and known variance 0? and X, ,q,---, X, is random
sample from Normal distribution with unknown mean 6, and known variance
o?. Without loss of generality assume that o2 = 1. Also under conjugacy
assume 6; ~ N(u;,77) independently for + = 1,2 and all hyperparameters are
known. Then it can be shown that the Bayes factor for change versus no

change is given as

X@)|Mo)
BF(d) — f( (d)
F( Xy My)
S et A (VB + S e Ayl Balr)
= g4l r)DBa(r
r<d kz} k#d Tk ' r>d Zk 1 k#d Mk ’

(4.5)
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where

ey (O Y[ S (S
AR (41— P12 +(r+1—-4) f+n-—1

and

2 Fo(1f T
Bi(r) = | — —— expis | =] -
s+n+l—1—1r 2\ s 4+n+l—1—7r 735

4.2. Poisson Distribution

Assume that Xi,---, X, is a random sample from Poisson with mean X,
and X,,1, -+, X, is random sample from Poisson with mean )\2 Also assume
A; ~ Gam(a;, b;) independently forz = 1,2. That is, p(A) = a)ba A" lexp{—
Let 8; = log A; for 2 = 1,2. Then

ky = logioBF — logioBF'® | (4.6)
where
X(a)|Mo)
BF@ _ F(Xa)|Mo) 4.7
J(X(a)| M) (1)
n—1
= Y "  BFYr)+ Y = BF(r)
r<d >kt k#d Tk r>d Zk 1 k#d Tk
and for: = 1,2,

L(S,, + a1)D(T}, + ap)((n — 1)by + 1)Sn+a
T(ay)[(S) 4+ a1)((r 4+ 1 —4)by + 1)%:ta

1 by \ T

2

= . 4.
X ((n+l~—l’—r)b2+1)Tri+a2 X (bl) ( 8)

BF"(r)

5. ILLUSTRATIVE EXAMPLE

We now apply the results of the previous sections to data set consisting of
intervals between coal-mining disasters given by Jarrett(1979). Rudems(1982)
suggests that a change-point model may be appropriate. Also Carlin et.
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al(1992) consider the hierarchical Bayesian approach to this using Gibbs sam-
pler.

Assume that X,---, X, is a random sample from Poisson with mean ),
and X,;1,---, X, is random sample from Poisson with mean Ay. Also assume
Ai ~ Gam(a;, b;) independently for i = 1,2 and /; is one for all  in (2.4). That
is, let §; = exp A; for ¢ = 1,2. Then

ZBF (5.1)

n—l

where BF(r) is in (3.7).
Then

2 BF(r (5.2)

n—1
where BF'(r) is in (3.7).
With a; = 2,4, =1 and b; = b, = 1, the Bayes factor for change versus

no change is calculated using (5.1), and is turned out to be 6.69 x 10'2, which
overwhelmingly supports the “change” model.
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Figure 1 : Values of BF(r) Figure 2 : Values of |k,

The individual Bayes factor BF(r) are plotted in Figure 1 which indicates
that the maximum change is at 41 observation which corresponds to the
year 1891. This result closely pararells to Carlin et. al(1992)’s result that the
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posterior mode of r is » = 41. So we can guess that the change may happen
at 41%% observation. At the center of 41tk observation, the first half of data’
values are larger than the remaining data. And |k4|’s values are plotted in
Figure 2. The Figure 2 indicates that the values of |ks|, |kg] and |ky4| are
relatively large and the corresponding value of data are all 0 in the first half
of data. So those data can be outliers in the first half part.

(9)

(10)
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