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Canonical Correlation BiplotV

Mira Park 2 and Myung-Hoe Huh 3)

Abstract

Canonical correlation analysis is a multivariate technique for identifying and
quantifying the statistical relationship between two sets of variables. Like most
multivariate techniques, the main objective of canonical correlation analysis is to
reduce the dimensionality of the dataset. It would be particularly useful if high
dimensional data can be represented in a low dimensional space.

In this study, we will construct statistical graphs for paired sets of multivariate
data. Specifically, plots of the observations as well as the variables are proposed. We
discuss the geometric interpretation and goodness-of-fit of the proposed plots. We
also provide a numerical example.

1. Introduction

The main objective of multivariate analysis is to reduce dimensionality of the data set. For
the “PCA(principal component analysis) data” in which there is only one set of multivariate
observations, we have the biplot display due to Gabriel(1971).

The aim of canonical correlation analysis by Hotelling(1936) is to find out a number of
linear relationships between two sets of multivariate observations. The applications of
canonical correlation analysis are presented by many researchers such as Mardia et al.(1979)
and Holland et al.(1980). The problem that will be studied here is to portray the
“CCA(canonical correlation analysis) data” with statistical graphs similar to Gabriel’s biplot,
to help user’s interpretation of algebraic result of the canonical correlation analysis.

2. Geometric Route for Quantification

Let the data matrix Z with N observations{rows) and p+¢ variables(columns) be
partitioned into two submatrices X:#Xxp and Y:uxg. Thus Z=[ X Y] :nx(p+gq). For
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convenience, we assume that columns are centered and standardized, unless mentioned

otherwise. Furthermore, we assume p>¢, without loss of generality, and, rank (X)=p, rank
(N=q.

The columns of X and Y can be positioned as p+¢ points in the Euclidean space R”".
Let S and T be the linear subspace of R" that are generated by columns of X and VY,
respectively. So, S consists of vectors Xa for a= R’ , and similarly, 7T consists of vectors
Yb for beR?

The aim of canonical correlation analysis can be formulated as

"Ziz( corr( Xa, YD),

which, in turn, is equivalent to find out two vectors, one in each subspace S and T of R",

that have minimum angle between them. It is well known (e.g. Mardia et al. 1979, p.282) that
the algebraic solution comes from the eigensystem

(XX) (XY(YY) (YXNXX) Vo = o, 1
(Y1) (YXOXX) (XYY Ve = o, @
and, finally, from the linear relationships
a'é(n-l)l/z(XX) -2, b =(n—-1)"2(V'Y) 2y,
Since (1) and (2) together can be shortened into a singular value decomposition of
(XX) (XYY o
(XX (XYY = Upv, (3)

where U is a pXg matrix of orthonormal columns, Vis a gXg orthogonal matrix, and D

is a diagonal matrix with P1=2022-2p, as its diagonal elements. Pre-multiplying

(X'X) V2 and post-multiplying v to both sides of (3), we have

(XX) UXYNY'Y) 2y = o(X'X) Vg,
or

(XX) MX Vb =pa". 4
Pre-multiplying X to both sides of (4) yields

X(X'X) 'X(Y8") = pXa". (5)
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Similarly, pre-multiplying 2% and post-multiplying (YY) 12 t5 both sides of (3),
(XX VHX (Y'Y =00 (YY) T,
(YY) (YX)a"=opb". 6)
Pre-multiplying Y to both sides of (6) yields

or

WY'Y) 'Y(Xa")= Y0 (7)

“Dual relationships” (5) and (7), which can be found also in Lebart et al. (1984, p.68) and in
Nishisato(1980, p.63), tell us that Xa* and Yb" are projections onto each other’s space (up to
the scale factor p). Therefore, Y&  has a projection X(X'X) IX'YD' or eXa® on the
subspace S generated by the columns of X. And, thus, eXa® contains quantification of rows
belonged to the X matrix, with external reference to prespecified scaling vector Y9’ In a
symmetrical way, quantifications of rows of the Y matrix with prespecified scaling vector
Xa* are contained in pYb".

Now, consider supplementary data Xg=1, for the first set of variables. The elements of
the s-th row e, of Xg are zeros except for the s-th element, which is I. Since all the
variables are centered and standardized, the supplementary observation e; represents the
single role of the s-th variable in the X dataset.

Therefore, quantification of the columns(or variables) of X is given by X s’ or pa’.
Similarly, quantification of the columns(or variables) of Y is given by oYsh™ or pb*, where

Ys is the gxq diagonal matrix with I's as diagonal elements (thus, Ygs=1I,). Lebart et
al.(1984; pp.14-16) used such supplementary data technique to represent additional individuals
or variables in the case of principal component analysis.

This unidimensional quantification procedure for rows and columns of the X and Y

matrices can be easily extended to multidimensional quantification. Table 1 summarizes row
and column quantification formulas, with obvious matrix notation

A'py=(al".,a}) and B (,=(b"",b}) for r<min(p,q).

Table 1. Quantification Formulas for Canonical Correlation Analysis

Rows Columns

Data matrix X XA »D A'»D (»

Data matrix Y YB'»D () B'(»D (»
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By plotting the first and the second order quantification results, we can obtain the two
dimensional quantification plots for the rows and columns. We call such pairs of quantification
plots, which are often but are not necessarily two-dimensional, by “canonical correlation
biplot”.

As can be seen in Table 1, the proposed method scales canonical coefficients and canonical
scores up and down proportionately to the corresponding singular values. Compared to the
conventional plot for canonical correlation analysis, our canonical correlation biplot put more
emphasis on the axis with larger canonical correlation and depreciates the axis with smaller

canonical correlation.
Now, let us look at the goodness of lower dimensional approximation offered by

quantification plots. Lack-of-approximation by row quantification plot for X is captured by
IXA*D~X(A")D (0 peio- = oy -+ + 02,
compared to
IXA'DI? = o} +++++ 63,
where [|QI? is defined as #{C’'C). And thus we can define the r-dimensional goodness-of-

approximation for X in row quantification plot as

GOA (» for X = 1—IIXA'D~X(A"»D (»:0 pxia-n)ll?/IXADI?
= (o2 +02) /(02" -+ +0D),

Similarly, for Y, it is similarly defined as

GOA () for Y = 1—|IYB'D—Y(B'()D (: 0 o (a-)I /I YB"DI|?
= (o} +-+00/ (o} + +0D).

For column quantification plot of data matrix X and Y, we may define

GOA o for X = l—IIA.D_ (A'(Y)D(r):Opx(q—r))Hz)('X / “A'HIZX'X
=(p}+- 40D/ (0} + +02),

GOA () for Y =1=|IB*D—(B'(»)D (5: 0 gx(o-»)l%¥y / IIB’Dll%y
= (ot +0) [ (o} ++ +0),
where ||Ql% is defined as #/{(C'MC). The reason why we use norming matrix X X or

Y'Y is that column quantifications are lacking absolute uniqueness under nonsingular

transformation of X or Y : that is, XA = XT\ (T, 'A") and YB = YT,(T, 'B*) for any
nonsingular matrices 7 and T7,. Here, we may note that goodness-of-approximations for X

and Y are the same.
A further interesting measure related to the r-dimensional quantification is the measure of
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how well the quantification explains the external reference by projections. Among the
statistical dispersion contained in X dataset
XA =p,

only

| YB' (D ol =04 +-++05
is reflected in the r—dimensional quantification plot. Thus we define the “explanatory power
indices(EPD)” for X which are similar to the coefficient of determination R? in linear
regression as

EPI, for X by ¥ = [YB'(»D 2/ 1I1XA"I?
= (pi+ +07)/p.

Similarly, for Y, we define

EPI, for Y by X =IIXA"D */IYB'II?
= (o} ++0Y/q.

3. A Numerical Example

To illustrate the proposed methodology, consider a physical fitness test data from Tanaka et
al.(1984). Seven(=p) motor variables and five(=q) exercise variables were measured on 38(=n)
high-school freshmen. The list of motor variables and exercise variables are as follows:

motor variables exercise variables
x1 side-step (number)
x2 : vertical jump (cm) yl : 50m run (sec)
x3 : back strength (kg) y2 : running-long jump (cm)
x4 : grip strength  (kg) y3 : throw (m)
x5 : step-test (index) y4 : pull-ups (number)
x6 : standing trunk flexion (cm) y5 @ distance run (sec)
x7 : chest raises (cm)

Canonical correlations and standardized canonical coefficient vectors are listed in Table 2
and Table 3, respectively. For X variables, all the first-axis canonical coefficients are positive

whereas the second-axis canonical coefficients are positive for x2, x4, and x7 and negative
for other variables. For Y variables, the first-axis canonical coefficients are negative for ¥l

and 35 and positive for 32, 33 and 34. And, the second-axis canonical coefficients are all
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positive. We can interpret these results more easily from quantification plots as we will see
shortly. Row{column} quantification plots of the two sets X and Y are given in Figure
I{Figure 2} and Figure 3{Figure 4}. Note that the axis with larger canonical correlation is
more emphasized in the plot.

In Figure 2, all the variables are found on the right side of the first axis. Therefore, we
may interpret the first axis as “general motor fitness”. The second axis can be interpreted as
“motor balance” of power and endurance since it is the weighted difference of vertical jump
(x2) and step-test( a5). In Figure 4, all the variables except for 50m run( 1) and distance
run( 35) are located on the right side of the first axis. Note that the athletic ability is good

when 1 and 35 have small values and thus the first axis can be interpreted as “general
athletic fitness”. On the other hand, the second axis can be regarded as “athletic balance” of
explosive  strength(jump; 32) and speed(run; — 41, —35). Therefore, the first canonical
correlation comes from the linear association between general motor fitness and general
athletic fitness. It means that the people with good general motor ability tends to have better
general athletic ability. And the second canonical correlation can b.e interpreted as the
correlation between motor balance and athletic balance. Thus ° people with good motor power
is good at the exercise which needs explosive strength whereas people with good motor
endurance is good at the exercise which needs speed.

Figure 1 and Figure 3 show the 13-th and the 23-rd observations contribute significantly to
the formation of the first axis of X and Y observations, and the 38-th and the 4-th
observation to the second axis. But they are quite different from each other in both variable
sets. By superimposing the row quantification plots and the column quantification plots, we
see that the 13-th observation has poor general motor and athletic fitness while the 23-rd has
good general motor and athletic fitness. On the other hand, the 4-th observation has relatively
large value for step-test (x5) and small values for running ( ¥1 and 35). The 38-th has
relatively large values for vertical jump(%2) and he does running-long jump( 32) better than
other exercises.

In both variable sets, the goodness-of-approximation for two dimensional quantification plots
are 66.5%. Explanatory power indices for X (by Y), and for Y (by X), are 17.9% and
25.1%, respectively.

Table 2. Canonical Correlations

o1 ) 03 Oy Os
08515 0.7284 06109 03932 0.3247




Canonical Correlation Biplot 17

Table 3. Standardized Canonical Coefficients
a3 as as a; as
xI 04421 -0.2087 -0.4641 -0.5514 -0.2295
x2 02669 07020 09016 05570 0.0816
x3 05884 -02102 -04639 -0.1332 03773
x4 0.0614 0.0148 05662 -0.1537 -09126
x5 02217 -0.7263 0.7237 04626 0.3014
X6 0.0911 -01749 -04354 04752 -0.1839
x7 0.0138 0.2399 -0.1718 -1.0336 0.5283
by b; b3 by bs
vl -04266 0.8255 -0.3704 0.6538 -0.1413
yZ 02335 1.0405 -0.2532 -0.7668 -0.4791
y3 03696 0.1982 -0.2894 03748 1.0851
v4 0.0038 02218 0.8830 09935 -0.0904
¥5 -03560 0.8101 05374 -0.1585 0.7481
(3 ) " X2
i 38 25135 - ~ 7
" . 315"1%2 5223 2" .
T *
o5 k) 34%0119 23 L. x6 x1 %3
Lo oD 14
- ‘ s x5

Figure 2. Column quantification plot
for motor variables

Figure 1. Row quantification plot
for motor observations
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Figure 3. Row quantification plot Figure 4. Column quantification plot

for exercise observations for exercise variables

4. Remarks

Let us consider the applications of the proposed quantification plots to some other types of
data. There are several comparable multivariate methods to canonical correlation analysis, such
as the discriminant analysis, the correspondence analysis and Japanese quantification method II
. Discriminant analysis is a special case of the canonical correlation analysis when the one set
consists of dummy variables. Usually, the discriminant scores and the discriminant coefficients
are plotted. On the other hand, by applying our method we obtain the plot which emphasize
the axis with larger singularvalues more, compared to the conventional plot.

To analyze the two-way contingency table using proposed method, we need to define
dummy variables for each category and re-express the data in the form of a
cases-by-variables indicator matrix. Correspondence analysis is an alternative graphical
method. Various forms of the correspondence analysis have been discussed extensively by
Nishisato(1980) and Greenacre and Hastie(1987).

Japanese quantification method II is used for analyzing two sets of qualitative data. We
can also apply our method to this type of data using dummy variables. In this case, any
centering and standardization of the raw data matrices should not be done. In 1986, Tarumi
and Tanaka suggested the quantification results same as oursMori and Tarumi, 1993).
However, We think this study laid a solid foundation for such quantification formulas.
Recently, Tanaka et al.(1994) discussed several technical problems concerning quantification
method II. Table 4 lists the comparative summary of the quantification results.
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Table 4. Various Quantification Formulas

Data X Y
Method row column row column
Canonical Correlation Biplot XA'pD ¢y A’D YB,D(y B'wD o
Discriminant Analysis XA A’y YB, B,
A D B’
Correspondence Analysi RS 7
PO HAysIs A’ B'(»D (»
Japanese Quantification A’wD B,
Method 11 A’ B't»D (»
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