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A Measure of Slope Rotatability
for Mixture Experiments

Jung-11 Kim?

Abstract

A measure that quantifies the amount of slope rotatability for the second degree
Scheffe polynomial model for mixture experiments is proposed and used to compare
the several mixture designs which met the symmetric moments conditions in this
article.

1. Introduction

The special nature of mixture experiments can be expressed in the following set of
constraints: If x; denote the proportion of the i component in the mixture, then

%:20 for all i, and gxi=1. (1.1)

For fitting a mixture response surface over the simplex factor space, much attention has been
given to the use of the canonical polynomials suggested by Scheffe(1958). Let us assume the
surface can be represented as a quadratic function in each of the q components. The second
degree Scheffe polynomial in q components, x'=(x1,X2,...,Xq), is

nx)= igllgixi+ j?j-;)ﬂijxixj- (1.2)

The coefficients in the polynomial are to be estimated from observations on the response
variable, yi(x) = n(x) + e, where the observations are taken at n selected combinations of the
x components. The e’s are assumed to be uncorrelated random errors
with zero means and constant variance 0. The B’s are then estimated by the method of least
squares, b = (X’X)'X'y, in which X is the n x m matrix of values of the m elements of x's

taken at the design points and y is the n x 1 matrix of y observations with m=q(q+1)/2.
Box and Hunter(1957) suggested that, subject to a suitable scaling of the independent
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variables it would be desirable to have equally reliable estimates of the expected response for
all points x equidistant from the design origin, that is, to have the variance of y(x) be a
function only of ol = xi2 + x4 .+ qu. This requires X’X to be invariant under rotation
and the designs having this property were called rotatable designs.

If differences at points close together in the factor space are involved, the estimation of the
local slopes(the rates of change) of the response surfaces becomes important. Thus, Hader and
Park(1978) proposed an analog of the Box-Hunter rotatability criterion “Slope Rotatability”,
which requires that the variance of dy(x)/axi, the slope with respect to the axial direction of
Xi, be constant at all combinations of the independent variables equidistant from the design
center,

Recently, Khuri(1988) introduced a measure that quantifies the amount of rotatability in a
given response surface design. The slope rotatability in experiments with mixtures has been
discussed in Park and Kim(1988). However, no measure has been introduced yet that
represents the degree of slope rotatability in experiments with mixtures. In this article, a
measure that quantifies the amount of slope rotatability in a given response function with
respect to the mixture components in mixture experiments is introduced.

2. A Measure of Slope Rotatability in Mixture Experiments

Suppose that estimation of slopes of 7(x) in the equation (1.2) at a point x is of interest.
When the estimated slope of y(x) with respect to x; is

ITx)/o%;=b; + ki:lb{'kxk @2.1)

k=+i
where bk = b if i <k and b’k = bg if i > k. The variance of this slope is written as

Var(8y{x)/dx;) = Var(b,) + §1Xivar(bik) + i"kg x.:X,Cov(bg, bi) +2 ki_;:lkaOV(bi, bi)

k+i k.1#i k#i

= v;+ i Xivik'f' ii XkX]Cik’n"f'Z é XkCi, ik 2.2)
k=1 k+1 k=.l

k. 1#i k=i

where vi = Var(bi), vic = Var(b'x), cix = Cov(bib'i), ciii = Cov(b'x,bn), izks=l.
Consider the difference

di(x) = Var(ay(®)/ox;) — Var(dy{x)/dx;) , i*j. (2.3)

To represent the quantity of slope rotatability, we define
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Q= |, [iiﬁ dij(g‘Z} dx (2.4

-1 -1
where R={(x1,x2,'--,xq_1) : x;20 and leiSI , Xq=1— Elxi }

When the variance of the slopes with respect to each xi is all the same, the above quantity
Qq(d) has a value of zero. Conversely, "Qq(d) is zero” means all the differences di; are zero by
definition of Qq(d) and hence the variances of the slopes are all the same. Furthermore, Qq(d)
becomes larger as a design deviates from a slope rotatable design.

Now, Qq(d) needs to be expressed in an explicit form as a function of variances and
covariances(vi, vik and Cii, Ciki). The following lemma appeared in Cornell(1981) will be used.

-1 =1
Lemma 1. Let R={(x1,x2,~-,xq-1) : %20 and leisl} , Where xq=1—‘21xi , then

-1
1—1 1 (Ec‘ﬂl—z
Cc [ Cq— i=
‘ X11X22 i qu_ll XmdX2"‘qu_1 = Ci! L y l

i=]1

dy / (‘gici-%q—-Z)! . @5

Now it can be shown that Qud) is given by the following formula.
Theorem 1. The quantity of slope rotatability Qq(d) is
Qu(d) = Z[X(To(Li) + Tu(@i) + To(i,) + Ty i)} (2.6)
Proof. The proof of this equality is given in Appendix A.
Corollary 1. Let us use the notation such as liil, [ijk], and [ijkl] to denote the pure second

order moments, the mixed third order moments, and the mixed fourth order moments,
respectively. Then for the mixture designs with symmetry conditions such as

[ii} = A for all i, [ij] = B for all ij,
[iijl] = C for all i#j, [ijk] = D for all i#j=k,
[iijj] = E for all i#}, [iijk] = F for all i#j=k,

[ijkl] = G for all i#j#k#l,

it can be shown that after some algebraic calculations vij , ciij and Cijik are constant for
all i#j*k and expressed as follows:
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v = [ TU+2T{(C-D)2—(A—B)(F —G)} +U{D(2C + (q—2)D)
—G(A+(qa—1B)}—2R(C—-D)+2S(F —-G)] /{TU(E —2F +G)},

¢, = R-T(C-D)/TU , 2.7)
cy; = [ T{(C—D)Z—(A—B)(F—G)}+U{D(2C+(q—2)D)
—G(A+(q—1)B)} —2R(C-D) +2S(F —G)] /{TU(E —2F +G)},
where

R= {2C+(q—2)D} B{E+(q—4)F—(q—3)G}—(C—D){C+(q—2)D}]
—{A+(a—DB} D{E+(q—2)F}-C(2F +(q—3)G}] ,

S= {2C+(q—2)DH (q—1)BC—-A{C+(q—2)B}]
—A+(q—1B[ (g—2)D(C—-D)—(A—B){2F +(q—3)G}] ,

T= [ {A+(q—1)B}{2E+4gq—2)F+(q-Z)(q—B)G}
—(q—D{2C+(q—-2)D}7 / 2,

U=[ (A-B)X{2E+2(q—4)F —(q—2Xq—3)G} -2(q—2X(C—-D)?] / 2.

Applying  this Corollary to the formula (2.6) and after ‘some algebraic calculations, the
quantity of slope rotatability Qq(d) is obtained to be

Qu(d) = ala—DI 5V +4{(a+3)c; +(q—2)cHv+(q+2)(q+3)c? (2.8)
+ 2(a—2)q+3)cica+(q—2)a~—1)c] /(g +3)!.

3. The Values of Qq(d) of Mixture Designs with Symmetry Conditions

Examples of experiments with mixtures can be found in various fields. Murty and Das(1968)
suggested a symmetric simplex design, that is, a class of designs which satisfy the symmetry
conditions and showed that the well known simplex-lattice and simplex-centroid design are
particular cases of them. They define a symmetric simplex design as follows:

Definition. A symmetric simplex design for experiments with mixtures consists of some or all
the groups Gg, d = 1,.,q, where every group Ga is obtained by permuting the different
fractions over the q components in a dw ordered mixture with dj components taking a
proportion p1, dz of them taking a proportion pz, and so on, dn of them taking a proportion pn
such that d1 + .. + dn = d and dip1 + .. + dnpn = 1.

Example 1. A simplex-lattice (q,m) design for q components consists of the m+q-1Cm points
of the simplex representing all possible mixtures in which the proportion of each component has
the m+1 equally spaced values 0, 1/m, 2/m, .. , 1. This design has a different number of
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groups Ga for every d = 1, .. , m. For example, there are three groups Gz in a (q)
simplex-lattice design with points of the type (1/6 5/6 0 ... 0), (1/3 2/30 ..0) and (1/2 1/2 0 ...
0). Then, the values of the constants for a simplex-lattice (3,m) design are given as follows:

| + (m-1D@m-1/3m + (m-D%m -2 /12m,

s (m®-1/6m + (m-2)m®-1)/24m,

s mZ-1/12m + (m - 2(m®- D@m - 1)/ 120m?,

= (m? - D(m? - 4) / 120m?,

= (mZ - Dm? + 1) /30m> + (m - 2(m?® - 1)(2m2 - 2m + 3) / 360m°,
= (m2 - D(m? - 4) / 360m?,

= Q.

Mmoo awrE

By substituting these values in (2.6) and (2.7) we get the values of Qs(d) for the cases m = 2,
3, 4, 5 and 6 as in Table 3.1.

Table 3.1. Values of Qa(d) for (3,m) simplex-lattice design
m 2 3 4 5 ‘ 6
Q,(d) | 18067 | 6989 | 3325 | 1646 | o817

Example 2. A simplex-centroid design with  2* - 1 points involves observations on mixtures
consisting of all those combinations of the components where the proportion of each component
present is equal. This design has all the q groups Ga, each of the nonzero fractions being equal
to 1/d in every mixture. Then the constants in lemma 2.1 take the values as follows:

A= i" q—lck—l / k2 ’ B = i q-zck-z / k2 s C = ki‘- q—ZCk—Z / kz ,

k=1 k=2 =2

ﬁ a-Cu-2 / k', F = kf: a-3Cx-3 / k!,

k=2 =3

D = ki:a3q—3ck~3 /x*, E

G = i a—4Cx—a / k.

k=4

By substituting these values in (2.6) and (2.7) we get the values of Qq(d) for the cases @ = 3,
4, and 5 as in Table 3.2.

Table 3.2. Values of Qq(d) for simplex-centroid design

l q 3 4 5 4\

\ Q(d) 12.503 2392 0.317 J
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Example 3. Consider the symmetric simplex design in g components with the three groups Ga;
d =1, 2, 3 where the components in each group Gq take the proportion 1/d. Then the values of
the constants are given as follows:

A = (2% + 3q +31) / 36, B =(4q +1) /36, C = (8g+11) / 216, D=1/27,
E =(16q+49) /129, F=1/81, G =0

By substituting these values in (2.6) and (2.7) we get the values of Qq(d) for the cases q = 3,
4, and 5 as in Table 3.3,

Table 3.3. Values of Qq(d) for symmetric simplex design

q 3 4 5
Q. (d) 12.503 2.606 0.438

Example 4. Consider the (3g+1)-point simplex screening design with q components described as
follows:

name number composition
vertices q Xi = 1, x5 =0 for all j # i
interior q Xi = (q+1)/2q; x5 = 1/2q for all j = i
centroid 1 Xi = 1/q for all i
end effects q i = 05 x5 = 1/(g-1) for all j = i

Then, the values of the constants are given as follows:

=5/4 + 3/4q + 1/¢% + 1/ (g,
3/40 + 1/d® + (q-2 / (g-13
(a+d) /84 + 1/ + (g-2) / (q-1)3
1/2% + 1/¢® + (¢-3) / (@13,
(20+5) / 160> + 1/q* + (g-2) / (q-D)*
(@+5) /160> + 1/4q* + (¢-3) / (@-1)*
5/160> + 1/q* + (q-4) / (-D*

QT EHOOW >
"

By substituting these values in (2.6) and (2.7) we get the values of Qq(d) for the cases q = 3,
4, and 5 as in Table 3.4.

Table 3.4. Values of Qq(d) for simplex screening design
a 3 4 I 5
Q.(d) 5.636 0305 | 0317
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Now, we consider a design which is not a symmetric simplex design but has the symmetry

conditions.

Example 5. Consider the three component mixture experiment such as the n design points are
equally spaced on a circle centered at the centroid (1/3 1/3 1/3) with radius o . If 6 denotes
the angle between the xi axis and the line which connects a design point to the centroid, then
the coordinates of each point are given by (X1u X2u X3u), U = 0, 1, .. , n-1, where

1/3 + 6 p cos(@ + 2um/mn) /3,
X2u = 1/3 - 6 p cos@x/3 - 0 - 2ux/n) /3,
Xau = 1/3 + 6 o cosla/3 - 6 - Qun/n) /3.

X1u

Then, the values of the constants are given as follows:

A=n/9 + ne2/3 B=n/9 - np?/6,C=n/27,
D=n/27-np2/6, E=n/81-npz/18,
F=n/8 + np2/12 G=0

1

By substituting these values in (2.6) and (27) we get the values of Q3(d) for the cases 6 = 0,
02=1/6n =5, 10, 15, 20 and 25 as in Table 35.

Table 35. Values of Qa(d) for circular design

n 5 10 15 20 25
Q;(d) 2.563 0641 | 0285 | 0160 | 0.102

4. Concluding Remarks

In this paper, a quantity that represents the degree of slope rotatability in mixture
experiments have been proposed and computed in oder to compare several mixture designs with
symmetry conditions. We can found following facts:

(1) Increasing the number of design points seemes to be a cause to make a given mixture

design more slope rotatable.

(2) Increasing the number of components also increase the number of design points and

decrease the values of Qq(d).

(3) It can be evaluated for any set of points, with or without symmetries, and hence be

applied to any kind of design and any number of independent variables.

But this quantity is not expressed as a percentage and does not have an upper bound, which
is expected to be developed in later study.
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Appendix A

Proof of Theorem 1.
Applying the Lemma 1 to the formula (2.4) and after some tedious algebraic calculations the
expression (2.6) can be obtained, where

To(i,j) = (Vi_Vj)2/(q_'1)! + 4(vi—v)(ci—ciy)/al + 8(Ciz,ij“Ci,ijCj,ij‘f‘Cjz,ij)/(q+1)!
+ 16vicii+e;)/(a+2)! + 40vi/(q+3)! ,

Ti(i,j)) = ki;:l[ 4(vi—v)(cip—cilal + {Z(Vi“V,')(Cij,ik_Cij.jk+2Vik—2ij)
ki, j
+ 8(Ci,ij_Cj,ij)(ci,ik—cj,jk) + 8(Ci,ik_cj,jk)2}/(Q+l)!
+ {lz(vik—vjk)(ci,ij_cj,ij+2Ci,ik_2Cj,jk) + 16(ci ik —¢;j 3)(Cij. ik —Ci.jx)
+ 8(20i,ijCij,ik"Ci,ijCij,jk‘Ci,ijCii,ik +zci,ijcij.ik)}/(q +2)!
+ {24(vy _ij)2+24(vik—ij)(cij,ik_cij,jk) +4vi(cij,u +cij i)
+ 16(Ci2j,ik_cij,ikcij_jk+Ci2j),jk}/(Q+3)!] ,

Ty(i,j) = 2;;;:[ {Z(Vi_Vi)(Cik.u‘Cjk,n“Cij.ik'*'Cij,ik)+4(Ci.ik_Cj.;‘k)(Ci,u‘Cj.n)}/(Q'*'l)!
K 1#i,j
+ {8(Vik—ij)(Ci,u_Cj,jl) + 8(Ci,ik_cj,jk)(cij,il—Cij,jl—zcjk,jl+20ik,il)}/(Q+2)!
+ {4(Vik—ij)(Vu-le‘i‘ZCij.n_2Cij,,'1+50ik,n"GCik.jl) — 4(cy,uCii, ik +Cis.iwCii. it)
+ 16(Cﬁ,ik—Cij.ik)(cik,il—cjk,jl)}/(q+3)!] ,
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Ti(i,)) = égg[ 4(Ci,ik“Ci.ik)(Ci1_im+Cj1,jm)/(q+2)!

K1 nvei j
+ 4{ (Ve —Vi)(Cirim—Citim) + Z(Cik,i]_Cjk,jl)(cik,im—cjk,jm)
+ (Cik,il—Cik,il)(cij,im_Cii.jm)}/(q+3)!] ,
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