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Change Analysis with the Sample Fourier Coefficients

Jaehee KimV

Abstract

The problem of detecting change with independent data is considered. The
asymptotic distribution of the sample change process with the sample Fourier
coefficients is shown as a Brownian Bridge process. We suggest to use dynamic
statistics such as a sample Brownian Bridge and graphs as statistical animation.
Graphs including change PP plots are given by way of illustration with the
simulated data.

1. Introduction

The change problem is of great practical importance. It tests the hypothesis that they are
identically distributed. Parzen (1979) attempted an approach to statistical data analysis in
parametric and nonparametric ways and used his idea for change analysis (1992). Kander and
Zacks (1966) suggested test procedures for possible changes in the location parameters when
the change-point is unknown. Zacks (1983) conducted a survey of tests for the change
problem with fixed sample and sequential procedures. Eubank and Hart (1992) showed that
the goodness—of-fit test can be used in testing for possible changes.

In this paper, we are concerned with the change problem. Detection of change using
dynamic statistics which is Wiener or Brownian Bridge process will be introduced. The
sample Fourier series as a data transformation is used in the change analysis. Also we
approach change analysis graphically.

2. The Basic Change Problem and the Analysis

Let Y,, ... Y, be a sequence of independent continuous random variables with mean #;'s
and common finite variance. For the basic change problem, the hypotheses of interest are
HO: U\ = o= "= U~ 2.1
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which is the homogeneity or no change against
Hy py=py==p,=py, ppg==u,=p+é, m,d unknown. (2.2)

Let ¢ and o denote the true mean and denote the standard deviation under H 0-

The sample Brownian Bridge is defined as a piecewise constant process on (< #1:

(2 ~ A ]
B(f= 3 (Y= A)/& with jumps at t,= L
2

n

where pu= E(Y)=% ZIY,-=-I7, o= Var(Y)= E((Y— )% and [ #f] is the largest

j=

integer that does not exceed nt.
Let us define normalized variable Y=(Y— ,71\)/ g. Following Parzen (1992) dynamic

statistics on 0<#<1 called sample change density (or sample Brownian derivative) is defined
as

c(t)= Y;, G-1)/n<tj/n for j=1,.. n. (2.3)

Sample change process (or sample Brownian Bridge) is defined

&t = fo “E9)ds. (2.4)

Sample change test process is defined as
CT(H= C(HINKI-D, 0<KI, (2.5)
The distribution of V2 C(#) (or V2B(?) ) is asymptotically a Brownian Bridge process with
mean zero and covariance kernel min(s, £) —st.
Graphs of the dynamic statistics ¢, C , and CT provide graphical diagnostics to test

whether there is change in the process. But if there is cyclic change or more than one
change-point, the cusum type sample change process with the data does not work well. In the
following section this problem will be dealt with the sample Fourier coefficients. We propose
to use the sample Fourier coefficients in the change analysis for any knid of change, that is,
the change is abrupt, cyclic or smooth.

3. The Proposed Procedures

Suppose one observes data Y, ..., Y, obeying the model
Y,‘=#j+€,', tj_lsl'< t,', ]=1,,m+1 3.1

where 1=1t¢<t{t(***<t,{t,,41=n are unknown change-points, &;s are white noises
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with mean zero and finite variance 6% This model is a general expression of the
change-point model. The above model represents that the regression function is a stepwise
function and g ;= u;(x;) which depends on the design points. Therefore if the regression

function is continuous with smooth change, it can be expressed as
Y=Ax)+e (3.2)
where Ax) is nonconstant.

Using sample Fourier coefficients, the null hypothesis of no change against the alternative
hypothesis of at least one level change in the process can be tested. When the alternative
hypothesis is true, a sample Fourier series estimator applied to data will be sensitive to level
changes. Tests with the sample Fourier series estimator might be more sensitive in detecting
cyclic change and change with multiple change-points.

Define the sample Fourier coefficients with the cosine bases as 55\0= y and

;=% P Y Zeos(miv), x=1"0, j=1,.,n-L (3.3)

i=1 n

Mathematical properties of Fourier coefficients are discussed in Tolstov (1976). We apply
change analysis (Parzen (1992)) with the sample Fourier coefficients as follows. Define

normalized sample Fourier coefficient as 5=ﬁ8/ 0. Sample change density, sample change

process and sample change test process with the sample Fourier coefficients can be defined
analogously to the ones in Section 2 as

a= a;, G-1/n<Kjn for j=1,..,n,

CA(D= [ ‘Ga(9)ds, (3.4)

CTA ()= CA(W/VK1-1), 0<KI1.
Theorem 3.1 The asymptotic distribution of Vnd j is N0, 6?) under H, And the

asymptotic distribution of 7 é ,~2 /6% is Chi-square with the degree of freedom 1.
Remark. \/—n 3 ;/'s are asymptotically mutually independent.
Theorem 3.2 The asymptotic distribution of VnCA(Y is a Brownian Bridge process with
mean zero and covariance kernel min(s, £) —st.
Let us define equally spaced design points as x;=(7—0.5)/ n. For large » the Fourier

series estimator estimates a piecewise constant function. The underlying function can be

estimated with sample Fourier coefficients with A<{#,

Fad= ot B, BV Zcos(). 35
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We can consider the integrated squared error,

ISED= [ ( 7:(0=An)*=( 3049+ L 3,-9)%+ X 43— 3 81

We can choose A which minimizes the integrated squared error. Minimizing ISE(k) is

equivalent to minimizing

AD=F 3°-2% 34,

The expected value of #{A1) can be written as
2
B = B3 3,)25F 8.9,
27 ) 3
~ ZE 328 as nooo
~ BE39-22 (B 3,9~ Var 3)
= - SR 3,)-2var( 3)),

using the fact that FE( @ i)—¢; as m—ooo for piecewise continuous functions f. Define the

risk as a function of A
1
RD=E[ ( }a(x)—Kx)'dx, 1=0,1,2,..,n-1. (36)

An approximately unbiased estimator of C—R(A) is

_ & 422 25%
M(X)—igl $; -

where C is a constant not depending on A and o’ is any consistent estimator of 0% Let
A be the maximizer of M(1). We can consider the test that rejects the null hypothesis if
A= 1, with level a. The level is controlled by the distribution of A. A, is defined to be

the maximizer of

R ~
ma,Co= % 87— <224, @

where, Cjg5=4.18, and C( p=3.22 (from Eubank and Hart (1992)).
If the null hypothesis is true, then it is expected that @ i=0, j=1,..,n—1. The graphs
of m(A,C,), A=0]1, ..,n-1 can be used for checking if there is change in the process.

The maximum of m(A, C,) should occur at A=1 if the underlying function is nonconstant.
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We consider the sample quantile function of the sample Fourier coefficients Q"w),

0<u<1. Q™) is the inverse of the sample distribution function F (y), —oco{y<o0, To
compute the sample quantile function u; v; for j=1, ..., n, should be determined. The

cumulative relative frequency is denoted by

u;=F ™ (v,)= fraction of sample Fourier coefficients <v;. (3.8
Note #,=1, and let #,=0. If all values in the sample Fourier coefficients are distinct, the

distinct values are the order statistics $(1)(“'< é (- The sample quantile function Q®
can be determined as
Q(wW=v;, u;{usu, (39
or equivalently
Qup=v; j=1,.,n
The sample distribution function F M of data is discrete. To estimate a continuous

distribution function, define initial value vg and mid-values by

v}”=(v;+vi+1)/2, ji=1,.,n—1, vi=vy Vu="Un (3.10)
uj=(j—0.5)/nv j=1""1n—1)
Q" (up=v7, (3.11)

w;=F(Q™(u))=F(v],
where F(-) is the cumulative distribution function of N(0,1) distribution. Since the
asymptotic distribution of the normalized sample Fourier coefficients is standard normal. We
suggest to go over the change PP plot graphs of ( uj, Vrlw i—u) ) which are expected

to behave as a Brownian Bridge under H, (see Ross (1983)).

If the normalized data are used for the change PP plot, the distribution from which the
data are obtained should be known. In practice, it is hard to know the true distribution.
However when the sample Fourier coefficients are used for the change PP plot, we can use
N(0,1) distribution function if the sample size is large enough. We also recommend to check
the normal quantile plots since the distribution of sample Fourier coefficients is asymptotically

identically normal under H.

Remark. wj;'s show the value for the distribution and i's represent the empirical
distribution. Under H,, V#{w;—u ) is a random walk. If the alternative hypothesis is true,
there might be a trend in the change PP plot.
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4. Simulation Study

A simulation is conducted to investigate the behavior of the sample Fourer coefficients in
the change analysis. The critical values for the sample change test can be obtained from
basic calculations. But the main interest in this article is to detect change from the graphical
point of view. Models considered are as follows
(i) No change model

Ax)=0, 0<x<],

(ii) One change-point model (B=1.0)
_(0, 0<x<0.5,
O={g  aersl

(iii) Two change-points model (8=1.0)

0, 0<x<0.3,
f(x)=[,3, 0.3<x<0.7,
0, 0.7<x<1,

(iv) Cyclic change model
Ax)=cos(mix), 0<x<], j=3.
Data are generated from

yi=Rx)+e, x;,= %5— n=>50,

where &/'s are iid from MO0,1) with a fixed sample size 50. We used a nonparametric

variance estimator

ot= b~ 8 -y)?
2(”"‘1) =) i+1 (7
which is less sensitive whether the null hypothesis is true or not.

Figures 1, 2, 3 and 4 show the comparison of change analysis with the sample Fourier
coefficients for given models. If the null hypothesis is true, plots of the change process with
the data and the change process with the sample Fourier coefficients show no trends.
However when there is change in the process of means, we see some trends in plots of
change process in Figures 2,3, and 4. For plots of m, a=0.10 was used. Maximums of
occur at 0,1,2, and 3 respectively in Figures 1,2,3, and 4. The change PP plot in Figure 1 is
most likely to behave as a Brownian Bridge. Change PP plots in Figures 2,3, and 4 are not
shown as Brownian Bridges. The normal quantile plots show outliers in Figures 2,3 and 4
with the change model.
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5. Discussions

We used the sample Fourier coefficients to detect change of the process. There are some
advantages when we use the sample Fourier coefficients in change analysis: (i} For any kind
of change the sample Fourier coefficients can be used. (i) We can estimate the underlying
change function, if exist, after the order of the Fourier series is obtained. (iii) Since each
sample Fourier coefficient is asymptotically normally distributed, we can use the standard
normal distribution function in change PP plots. Also we may use various orthogonal bases to
get the sample Fourier coefficients.

Graphs of change process, change test, and change PP plot are presented to identify
changes graphically. In practice graphical methods are easy to understand and appeal to
non-statisticians. Further development of theoretical and graphical methods are anticipated in
the change analysis.
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Figure 1. Change Analysis with No Change Model
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Figure 2. Change Analysis with One Change—point Model

0.0 0.2 0.4 0.6 0.8 10

scatterpidt of data

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

change test with sam);gle Fourier coefficients

e

>l

-2 -1 0 1 2

normal quantile plot with sample Fourier coefficients

sart(n) * sc

sqrt(n)*ca

-0.6

-1.4

0.2

-0.4

-1.0

-3.0

0.6

0.0

-0.8

0.0 0.2 04 0.6 0.8 10

0.0 0.2 0.4 0.6 0.8 1.0

change process with sa’r‘nple Fourier coefficients

with chi—é?qwgl%a variables

P
s %,
L ..
2 ML LT .
. Ve & e
b Yy

0.0 0.2 0.4 0.6 0.8 10

change PP plot with sa#'lple Fourier coefficients



216 Jachee Kim

phi

cta

-3

0.0 1.0

-1.0

0.0

-0.3

X

-3

Figure 3. Change Analysis with Two Change-points Model
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Figure 4. Change Analysis with Cyclic Change Model
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