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Error Rate for the Limiting Poisson-power Function
Distribution”

Joo—-Hwan Kim?2)

Abstract

The number of neutron signals from a neutral particle beam(NPB) at the detector,
without any errors, obeys Poisson distribution. Under two assumptions that NPB
scattering distribution and aiming errors have a circular Gaussian distribution
respectively, an exact probability distribution of signals becomes a Poisson-power
function distribution. In this paper, we show that the error rate in simple hypothesis
testing for the limiting Poisson-power function distribution is not zero. That is, the
limit of @+/ is zero when Poisson parameter 2—o© , but this limit is not zero (ie.,
07>0) for the Poisson-power function distribution. We also give optimal decision
algorithms for a specified error rate.

1. Introduction

A NPB can be used to estimate the density or mass of an object (Feller (1970)). A method
of object discrimination proposed here is to use a NPB aimed at the object, and a small
number of neutron signals are counted at the detector. The American Physical Society report
(1987) include a lot of detailed descriptions for the NPB. Beyer and Qualls (1987) showed that
the return neutron particles from an object interrogation for a given dwell time obeys Poisson
distribution.

The mean neutron signal A for the Poisson parameter is computed by the bistatic radar

prmula:
A=1[ I [ ”(—R‘?z-’—dy] -K(E.o)-[ ﬁ;] (1D

where [ is the probe current in amperes divided by 1.602x107Y coulombs, r is the dwell

time in seconds, A, is the object area in m2, R is the probe to object distance in m,
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V20, is the beam half divergence angle, K(E, §) is the mean number of neutrons leaked from

the object per incident particle and it depends on the mass of the object, E is the probe
particle energy in election volts, 8 is the scattering angle, A is the detector area in mz, &

is the detector efficiency, and # is the object to detector distance in m.

Let

_ _Ae _ KE04,
S = W and AE, 8 = Ar (1.2)

where A E, 8) combines parameters specific to the object design. Note that the mean return
signal in (1.1) becomes A = S- AE, §)/(27).

From the result of Beyer and Qualls (1987), we assume that the count of return neutron
particles obeys Poisson distribution. The interrogation requires the true value of the
parameters of the bistatic radar formula in (1.1) to compute the mean of the Poisson statistics.

One source of errors in measurement is aiming errors (or tracking and pointing errors)
which is the uncertainty about the location of the axis of the beam relative to the object.
Wehner (1987) studied the aiming error distribution of NPB. Kim (1994b) consider aiming
errors of the beam for an object interrogation and make the following two assumptions about
aiming errors:

(i) The beam has a circular Gaussian distribution of intensity with standard deviation o).
This distribution is on a plane perpendicular to the beam axis.

(ii) Aiming errors yield a circular Gaussian distribution of the beam axis relative to the
object center. The standard deviation of the distribution is a3 .

Beckman and Johnson (1987) give evidence from an experiment that the beam has a
Pearson Type VI distribution instead of a circular Gaussian distribution in assumption (i).
This distribution is much heavier in the tails than is the Gaussian. Kim (1994b) compared a
circular Gaussian distribution with a Pearson Type VI distribution for scattering distribution
of the NPB. He also derived the exact probability distribution of neutron particles in presence
of aiming errors.

2. Poisson-power Function Distribution and Its Properties

Under the assumption of a Poisson distribution of counts and aiming errors, the probability

of exactly x neutron particles, x = 0, 1, 2, ..., being counted is
1 fm fm “iar —(wi+ wD)/(2 oY dwdw,
x| = = e "AMe (2.1
PAD = 2 ) Jorman o7 07

where A is defined by
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I=k-e ~(eftad) /(2 o) 2.9)
where k= (27) 'SAE, #) and it represents the mean return neutron counts without
aiming errors, and S and f are defined in (1.2). In (22) 0, is a standard deviation of the
circular Gaussian intensity distribution of the beam at the object, and (w,, ®,) are
coordinates of points on beam cross section. g3 in (2.1) is a standard deviation of the

circular Gaussian aiming error distribution of the beam relative to the object. We average over

the aiming error distribution in (2.1) to modify discrimination for this uncertainty. In repeated

sequential interrogation, the probability in (2.1) leads to a reasonable and correct modification.
Using the polar coordinates transformation, and letting

2
- (9
¢ = ( 62) (23)
we obtain
Pl = —E Kx+ L3, (2.4)
ko x!
where

k
Hy; k) = fo et dt
is the incomplete gamma function.
We have defined in (2.2) that 2 be the mean number of return neutron signals counted
with the assumption that no aiming errors are made in the measurement of the parameters
and that the NPB is perfectly centered on the object. In this case, k=41.

Consider the probability distribution in (24) by P(x; k, £)

k
Plxi b 1) = k,‘x! fo e 0 dy
k
=%£e‘“’wx£(%)[w’“ldw

= L Efe 0
where E, represents expected value of @, and @ has a probability distribution
Aw)y= Lk ‘0’ ™}, L)1, 0sw<k (2.5)

The distribution in (2.5) is called the power-function distribution. From the above expression,
the distribution in (2.4) is a special case of a compound Poisson distribution where @ has a
power—-function distribution, and @ is a mean of the Poisson distribution. See Johnson and
Kotz (1970) for the definition of compound Poisson distribution. Thus the probability
distribution represented by (24) may be reasonably called a Poisson-power finction
distribution.



246 Joo-Hwan Kim

Kim (19953, 1995b) proved some properties such as unimodality, stochastical ordering,
computational recursion formula,, monotone likelihood ratio property, of the distribution. One of
results we do better remember is that the Poisson-power function distribution converges to
Poisson distribution as £f —oco . Here are some properties of the Poisson-power function
distribution which can be applied to the distribution of the NPB with aiming errors follow.
You can find detailed proofs of each property in Kim (1995a, 1995b).

Property 1. The mean and variance of the Poisson-power function random variable are

E(X) = k( z£+1)

and

2
var 0 = K1) + ¥ T — () |-
Property 2. The m.g.f. corresponding to the Poisson-power function distribution is
Mx() = E(e®) = E(B(e%|@)) = E(e""™"),
which gives
Mx(H = M(L, L +1, Ke'—1)),
where M is a Kummer's function (see Abramowitz (1964)) and is defined by

(@)yx (@) ,x"
Ma, b, x) = 1+_ab£+—(—b)ﬁ+m+(—b)”n—!+'"

where (a), = a(a+1)a+2)-(a+n-1), and (a)y = 1.

Property 3. The Poisson-power function distribution P(x;k, {) converges to Poisson
distribution P(x; k) as [ —oo,
Property 4. The Poisson-power function distribution has the recursion formula:

. _ x+ & } 1 k*e*
Plx;k 1) = x+1 Pxik, L) x+1 x

for integer x =0 .

Property 5. The Poisson-power function distribution is a unimodal probability distribution.
Property 6. The Poisson-power function distribution is stochastically ordered in £, in fact,
stochastically decreasing.

Property 7. A useful computation formula for the Poisson-power function c.d.f. is

5 ) _ 1 _ Aet+l; k) B Ac+ L +1;k)
2 Pxik, 1) =1-"ppgy + e+ :

Property 8. (Monotone Likelihood Ratio Property) The random variable of X of the
Poisson-power function distribution in (2.4) has a monotone likelihood ratioi and the
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Neyman-Pearson test rule for the simple hypotheses of Hy: k=1t vs. H;: k= d, when

d<t, is that reject H; if X<c which is a left-tail test.

3. The Limiting Poisson—-power Function Distribution and Its Error Rate

We test the null hypothesis Hy. A=1¢ vs. the alternative hypothesis H,: A= pt
assuming p=d/t{1. For this test, we study the limit of the minimum of a+f as the

parameter k—©°° ., The limit is not zero for the Poisson-power function distribution:

Pxik, 1)= —f—x+ 1R, x=0,1.2., 3.1

where 7 is the incomplete gamma function. Note that k=¢ under H, and k=d (d<{¥

under H;, as it is for the Poisson mean counts.

We first find the limiting distribution of the Poisson-power function distribution.

Theorem 3.1. Let X be a random variable with Poisson-power function probability
distribution P(x; &, £) in (3.1) and let Y=X/k be a scaled version of X. Then Y—U
in distribution as A—o° , where U has a standard power-function distribution on the interval
[0,1] given by (2.5).

Proof. It suffices to show, by the continuity theorem, the convergence of the m.g.f. of the X
to that of U. From the property 2 in section 3, the m.g.f. of X is
Mx(D= flem(e‘—l)l 2’ Vi
0
and that of Y is
M(t)=Mx(t/ k).

For each t=0, we have

Ke'~1) = tfole('/")“' do < te,

which is less than fe’ for k>1. From this, we also have He’*—1)—>t as k—oo. The
Lebesgue Dominated Convergence Theorem then shows
MA)oMLD as k—ooo (m]

From Theorem 3.1, we write
lim X/k ~ U,
Jo—c0
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where U has a standard power-function distribution on the interval [0,1], and we can use
the power-function distribution of AU as the asymptotic distribution of X . Note that the
asymptotic Poisson-power function distribution, under Hj, is

P(x|Hy) ~ £t ‘x*7", 0<x<t
and under H;

P(x|H) ~ td *x*71, 0<x<d.

The graph of the asymptotic Poisson-power function distribution under H;, and under H, is
given in Figure 1.

Pror

1M

" \

Under HO

Figure 1. The Asymptotic Poisson-power Function Distribution

For the test Hy: A=t vs. H;: A=pt, (0<p0<1), one computes the likelihood ratio
L(x)= P(x|H,)/P(x| Hy), and the Neyman-Pearson test that attains minimum a+8 is
L(x)=1. Note that the likelihood ratio of the asymptotic Poisson-power function distribution
for Hy and H; is

_( (d]p*, if 0<x<d
L(")_{ 0, it xd.

By the monotone likelihood ratio property of the Poisson-power function distribution (see
property 8 in section 3, see Kim (1995b) for the proof), the Neyman-Pearson test is X<pt
which is a left-tail test. Hence for this optimal choice

a= P X<ptl H)~ (U<p)=p"

and

B= P(X> pt Hy) = 0.
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Thus the limiting minimum error rate a@+f for the asymtotic Poisson-power function
distribution is

lim(a+8) = (o +0)=p".

lim(a+8) = (0 “ +0) = o

The type 1 error rate @ and the type II error rate B (8=0) for the asymptotic
Poisson-power function distribution are also shown in Figure 1. Note that the limit of a+#

is zero when k—oo the Poisson return signal, but this limit is not zero (ie., @ 50 ) for the

Poisson-power function distribution.

Using the limiting distribution of the Poisson-power function distribution directly to find
the error rate is not justified because the cut-off value for the Neyman-Pearson test also
depends on the mean values ¢ and pf and need to be controlled in the limit. The following
theorem follows to this case.

Lemma 3.1.

. —e Ax+ 1Lk _ p? for 0<p<1
mﬁofk ol ‘[ 1 for p>1. (3.2)

Proof. First we need a bound on a certain right tail area of the gamma distribution. Write
C -l -y g ~ -(1-qy
L vy e Vdy= fk g(y)e dy (33)

1

where g(¥»)=v“"'e¢™® . The maximum of g occurs at y=(a—1)/q, which is less than

(pk—1)/q for all a<pk, and in turn (pk—1)/q is less than k (since #/g<1). So g(y)
is monotone decreasing for all y=k and g(»)<g(k). So it suffices that

e a=1_ -y * —(1—q@y _ ka—1e~k
L y©e dy < g(k)fk e dy = =0 ° (3.4)

Now first any fixed number of leading terms of the series in equation (3.2) can be
neglected, since

limlk—lw < limZk—l’_&?ﬁi.u_-_—()‘

Denoting the limsup of the series in equation (3.2) by E, (and liminf by @, ), we have
for any fixed K>0,

fK_ﬁ%‘z'fl < limsup 4o £ p* fK_I_—!Z_x'_*"Ll .

x= . x= H

a,= limsup .o L £ —¢

_ . k
a ,= limsup .o L k¢ ﬁ —ﬁi%ﬁ < limsup poeo L & ¢ éK—IKxxT—”—

x=K
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Now by stirling’s formula (Feller (1970)), we have for any €>0, there exists a constant K,

such that for all x=K,,

(l—e)xl-lsﬂ%)'s(l+£)x[ 1

So
—_ Pk
a, < limsup p(l+e) 2k ¢ fK x? ldx
£
= limsupm(1+e)[ p’-(—%) ]
= (1+&)p*

Since &>0 was arbitrary, we have for 0<{p<1, @,<p’. To show a,= a,=p",

consider the remainder R. We compute

0<R =p'-To

< pl-— a,
k — .
= limsup s 2 £ 7 ﬁK nx+1)x'7'(x+l,k)
x= .
x+e+1_—k
< timsup et~ 3 Kt by (3.4)
. L k kx/x!
< llmsupb-oo (l_q) 2 ke_k

N 1 _
< T=a hmk 0.

This implies the ‘proof of the lemma for 0<p<1.

When p=0, the result is obvious. For p=1, we note that the series in (3.2) is a c.df. of

the Poisson-power function distribution and hence we always have @,< @,<1. For p=1,

we consider any 0< #<{1<p to obtain

g, = liminf otk ¢ 3 HELLB 4
x= .
by the part of the lemma already proved. Since $<1 was arbitrary, we have
2, ;p=1 for all p=>1.

This completes the proof of the lemma (@l
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Theorem 3.2. Consider a test Hy: A=t versus Hj: A=pt, (0<p<1). For the optimal
choice of ¢ to the Poisson-power function distribution, we have

- . + Y 4

mmm ¢ (@a+B) =p

In fact for this ¢, we have

. _# . —
ma—-p and 1;12/3 0.

Proof. Since the random variable X of the Poisson-power function distribution has monotone
likelihood ratio (see Kim (1995b)), the Neyman-Pearson test that attains min(a+p) is a
left-tail test X<c, where ¢ is the solution of x in P(x|Hp)= Px|H) or

et t;d) _

Aer ;0 °
Now among all possible critical regions, the choices with ¢=pf and p<p<1 gives an upper
bounds on the minimum a-+/8. Among the choices ¢= pt, the choice p=p gives the best
bound on the limiting minimum a+4. So

limsup jo {min , (a+8)} < o (3.5)

Now Hc+2:;H/Ic+ L) is a cdf of the gamma distribution evaluated at ¢ with
shape parameter ¢+ { . The gamma distribution has the monotone likelihood ratio property
and hence is a stochastically increasing family of distributions indexed with its shape
parameter. Suppose the optimal ¢{(1— &)d on some subsequent of k’s is tending to infinity
for some &>0. Then, by the stochastic ordering,

e+ 1;d) N A(1—&)d+ L;d)

Mc+1) N(1—e&d+t)
f:y”l—le Yy
= 1- TGF D) for x=(1—¢&)d
dJH[—le_d
2 -y WG

for (1—&)p<q<l. Now Stirling’s formula gives

dx+1—le—-d dx+1-—1e -d

TG L) = Voma+ 1) g &0

which tends to zero as d— 1 since —(1—&)In(1—&)—e<0, for 0<&<{l. So

Het L;t) y Aetlid) |
1> Nce+t) ? INc+ 1) 1
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on such a subsequence of #'s, which contradicts (3.5). We have the optimal ¢=(1—e¢)d for
all £>0 and for all sufficiently large &.

For the type I error rate alpha computed for the optimal ¢, we have

c (1—=¢)pt .
ac= X PHH)= I gt Axtlih) (36)

x!
which has a limit of ((1—&)p) ‘ by the lemma 3.1. And for the type II error rate beta for

this ¢, we have

c (l=-ed .
Be=1- X PalH)21- 3 g Aatlid) 37

X!

which has a limit of 1—(1—¢&) ?. Since €>0 was arbitrary, we have
limB.,=0 and Ilime.>p" (3.8)
koo oo

Finally by equation (3.8) the limit of (a.+8.) exists, and

. . o . —_ £
Ll_{gmm(a+ﬂ)— mac+ mﬁc o +0 m

The results of min(a+4) in Theorem 3.2 is consistent with the result of Theorem 3.1.

4. Computation of Error Rate

In this section we give an example of the application of the Poison-power function
distribution in (2.4) which takes account both of the aiming error and the circular Gaussian
distribution of intensity across the NPB.

These examples involve two algorithms. In the first algorithm, the type I error rate (or the

leakage rate) upper bound a" and the type II error rate (or the false alarm rate) B8 and the
smallest % is determined so that the bounds are satisfied. The second algorithm is applied in
case the first algorithm fails. The second algorithm determines if there exists an % so that
min (a@+p) is satisfactory by some standard. If this is not possible, then discrimination at a
satisfactory type I error rate and the type Il error rate is not possible. It is found that the

first algorithm fails if the aiming error variance o'% is too large relative to the variance o"f

of the Gaussian distribution of intensity across the beam.

<Algorithm 1> Consider the hypothesis of Hy: k=1t vs. H;: k= pt, where
p=d/t{]1. In a previous section, we showed that the Neyman-Pearson test here is a left-tail

test. For this reason, for a given @  and B° in the interval (0,1), we choose the smallest

k that satisfies
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— S — L < x+L;t »
a = EOP(?C”{O) = 7t EO x+1) < a (4.1)
and
T S _ q__ 1t L Ax+ ;0D .
8= 1-2 PaH) = 157 2~y <8 (4.2)

where for each k, the ¢ is the largest critical value which satisfies (4.1),

By a different calculation using an integration by parts, the quantities in (4.1) and
(4.2) can be written as

Ae+t; 0=t AL +c+1; 0

a=1-— T(c+D) {4.3)
and
. _ et 4 .
g = 7(C+1, pt) (;’(t)cq*_l)}‘(l + c+1; 00 (4.4)

For an example of the results for Algorithm I, we choose the following parameter value:
0=0.1 a'=5"=0.01

The following lists some results.

Z t a B
40 27 0.00945 0.00920
30 56 0.00977 0.00886
25 131 0.00997 0.00974
24 182 0.00998 0.00974
2.3 272 0.00995 0.00961
2.2 476 0.00997 0.00027
2.1 1242 0.00999 0.00973

For £ =2.0, there is no solution to the problem attempting to solve. This is the situation
when the aiming error variance is too large relative to the variance of the Gaussian
distribution of intensity across the NPB.

<Algorithm 2> In this algorithm, we successively fix k and find the minimum value
of @+ f. This is done by finding the maximum x* so that

P(x" | H)<P(x" | Hy).

The following table lists some sample results of this algorithm. We have selected p=0.1.
The quantity min(a+8) decreases monotonically as #—o° . In this case, this limitig value

approaches (0.1)7 .
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2 t a B a+p

20 1 0.5285 0.0642 0.5927
20 200 0.0225 0.0030 0.0262
20 1000 0.0152 0.0009 0.0162
2.0 2000 0.0136 0.0006 0.0142
20 3000 0.0130 0.0004 00134
2.0 3800 0.0126 0.0004 0.0129

5. Conclusion and Remarks

We studied that the error rate in simple hypothesis testing for the limiting Poisson—-power
function distribution. We found the limit of the sum of two types of errors a+f8 is zero

when Poisson parameter £—co , but this limit is not zero (ie., o 30 ) for the Poisson-power
function distribution. We also give two optimal decision algorithms for a specified error rate.

It is found that the first algorithm fails if the aiming error variance o% is too large relative

to the variance 021 of the Gaussian distribution of intensity across the beam.
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