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A Unit Root Test Based on Bootstrapping

Key-1l Shinl), Hee-Jeong Kang?), Heungsun Park3),

Abstract

We consider nonstationary autoregressive process with infinite variance of error. In
the case of infinite variance, the limiting distribution of the estimated coefficient is
different from that under the finite variance assumption. In this paper we show that
the bootstrap method can be used to approximate the distribution of ordinary least
squares estimator of the coefficient in the first order random walk process with
infinite variance through some empirical studies and we suggest a test procedure
based on bootstrap method for the unit root test.

1. Introduction

Consider AR(1) process defined by the rule

Xi=¢X, 1 te
where &,’s are independent and identically distributed with E(e)=0, Var(e)= 020,

When [#I<1 the process is stationary, but if ¢=1, we call this process a random walk
process. In a random walk case, our primary concern is to test if the unknown parameter ¢
is equal to 1. This test is called unit root test and it is closely related to differencing. For
estimation, least square estimator is a typical one, which is defined as

When ¢=1 and ¢2{co, it is known that
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The closed form of the limiting distribution can be found in Abadir(1993), and unit root test
has been done mostly by means of the empirical tables in Fuller(1976).

2. OLS with Infinite Variance of Error

In this section we consider the first order random walk process with infinite variance of
error terms. This kind of process usually can be found in economic data.

Consider AR(1) process
Xt= ¢Xt—l+€h X0=0 (1)

where &,'s are iid., whose distribution is in the domain of attraction of a stable law with

index @ € (1,2). In other words, the distribution of {&} satisfies Pl leyl>x] =x"“L(x)

where L(x) is a slowly varying function at o and lim-ﬂ—élm—=p, 0<p<1. See
o Pl 1> ]

Feller(1971) for more details on the attraction of a stable law. With these assumptions, the
variance of error terms is infinite and the mean is finite. Especially, we are interested in the

case of ¢=1 known as random walk process.

Typically, ¢ is estimated using the least squares estimator

3 XX,
t=2

n (2)
E zX:'Z_1

301.3*:
and Knight(1989) showed that

7( 801,8_1) 4L M

T
2[} S%(s)ds 3)

where S(-) and W) are defined in Knight(1989). Since the properties of S(+) and
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V(- ) are highly dependent on a, the empirical distribution varies through @. When a=2,
W1)=1 and S(-) is a standard Brownian motion.
To obtain the empirical distributions of the ordinary least squares estimator of ¢ under the

infinite variance assumption, we first generated ¢&;'s, 1<i<#, as follows:
leteU and V be independent random variables with P(U<f)=1¢, 0<i<], and
PV<Hh=1—e"', 0<t{oo. Further, let #(x) be a function defined by

h(x)= (Ml)ml_a)(w) for 0<x<1

sin(7x) sin (rax)

Then for @<1, the random variable S,= {A(U)/V} 7! is positive stable of index a.

Let &= N><(S,,/2)1/2 where N is normal with E(N)=0,E(N’)=2 and independent of
S.3. Then &;s are symmetric stable of index a€(1,2). Once we obtained 6",-'5, using the
model defined by X,=¢X, +e, , 1<t<n, we generated data X,'s with n=50, 100, 200
and a=1.2, 1.5, 1.8. We repeated the above steps 30,000 times to obtain empirical
distributions. Followings are empirical distributions of #( 301,3—1) , where 301.5 i1s the

ordinary least squares estimator.

<Table 1. Empirical distribution of n( @gos-1) with @=1.2>

Left Tail Probability
n 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99
50 -115 -8.43 -639  -4.13 0.89 1.35 1.89 2.75
100 -12.3 -8.88 -6.60  -4.47 0.91 1.34 1.85 272
200 -11.7 -8.69 650  -4.44 0.86 1.27 1.77 257
<Table 2. Empirical distribution of n( @ors-1) with a=1.5>

Left Tail Probability
n 0.01 0.025 0.05 0.1 09 0.9 0.975 0.99
50 -12.0 -9.12 -695  -4.77 0.94 1.35 1.83 253
100 -12.4 -9.31 -704  -499 0.94 1.35 1.78 2.43
200 -126 -9.49 -713  -497 091 1.30 173 2.43
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<Table 3. Empirical distribution of n( @ors-1) with a=1.8>

Left Tail Probability
n 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99
50 -126 -9.62 -7.43 ~-5.29 095 1.36 1.76 2.30
100 -12.8 -991 -7.66 -5.38 0.94 1.31 1.69 223
200 ~13.0 -9.93 -7.58 -5.39 0.95 1.32 1.69 217

One can see that as « increases to 2, the empirical distributions approaches to that of finite

variance case. See Fuller{1976) for the empirical tables of @=2. So one can use the above

tadbles for the unit root test under the infinite variance assumption when @ is known as 1.2,

15, and 1.8. The following figure illustrates these empirical distributions for various a's

with 2=200.
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<Figure 1> Empirical Distribution for Different a’s

3. Feasibility of Bootstrap Method with Infinite Variance of Error

However, Table 1-3 hardly can be used because the index of stable law, @, is not known
practically. But it is well known that bootstrap method can provide an alternative procedure
for studying the distributional properties of various statistics of interest. Basawa et al.(1991)
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showed that for the AR(1) process with unit root, the standard bootstrapping is invalid to
approximate the sampling distribution of the ordinary least squares estimator even if the &;'s
are independently normally distributed. But it was proved in Datta(1993) that under the
finite variance assumption, the sampling distribution of the ordinary least squares estimator
can be approximated by the bootstrap method when the bootstrap resample size, say, m, is
less than the original sample size, say, #.

To show the feasibility of the bootstrap method in approximating the sampling distribution
of the least squares estimator for the parameter of the random walk process with infinite
variance, we experimented some empirical studies with various m, 7z and a«. First, we
would like to begin with the standard bootstrap procedure. Given the original sample
X,,-, X, as in (1), calculate the residual 2‘1,--', £, by &=X,— $0LSXt-1 where

dors is given by (2). Define F .« the empirical distribution function based on
{&: t=1,-,m}. Now, pretending that F, is the true distribution, draw a random
sample { 2, : t=1,--,m} from F, » Again, pretending that 301_3 is the unknown true

parameter, construct the bootstrap sample X7 .-, X by the recursive formula

X!= $osXi1tel, Xg=0, t=1,,m (4

Let ¢ OLS* be the least squares estimator which is obtained by the following

n
. Bxrxn,
Pors =——H—. (5]
% X
Here, practically, we use the empirical histogram of the 301,3)k in (5 as the

approximation of the bootstrap distribution of the least squares estimator of the parameter of
the process, which can be obtained by repeating the whole procedures described in the above
for a sufficiently large number of times. To verify the validity of the bootstrap method, we
calculated the empirical levels for 90%, 95% and 99% confidence intervals based on the
percentiles of the bootstrap distribution of least squares estimator for the parameter of the
random walk process with infinite variance. The following is the overall scheme to calculate
the empirical level of, for example, 95% confidence interval.
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*,0.025 ~ 4 %,0.975
0.95 = Pr*[ m( 301,30025 — 3o <m( Pors” — Bors)<m( Bors — Bors)]
a0, ~ ~ A~ %095 4
~ Pr[ m( dos — dos)<n( dors—d<m( ¢ors — dos)l
~ a4 %095 ~ A %005 4
= Prf ¢OLS"'%( PoLs — Pors)<¢< ¢OLS_%( doLs = dors)]
where $OLS is the least squares estimator based on the original sample and 801,5*'0'02‘5 and
aom*.o.ms are the 2o5th and 975th largest value among 1000 bootstrap 301,3*'5,

respectively. If the bootstrap distribution of the least squares estimator is approximately equal
to the original sampling distribution of the least squares estimator, then, the above empirical
level based on the percentiles of the bootstrap distribution should be approximately 95% so
that we can claim the validity of the bootstrap method. To calculate the empirical coverage of
the confidence intervals we used 1000 iterations. The followings are simulation results with

various m,7n and e=(1,2).

< Table 4 : Empirical levels with various m, # and .a>

percentiles n m _Coverage

alpha=1.2 alpha=15 alpha=1.8

50 2 90.2 90.7 | 903

50 91.9 90.6 909

o 50 90.8 90.6 91.6

0% 100 100 916 90.3 913

200 L0 905 90.1 92.2

200 91.0 91.0 912

50 2 94.4 94.0 %2

50 96.9 94.3 949

50 945 95.3 95.4

%% 100 100 955 95.0 5.8

200 100 945 946 957

200 949 94.2 954

50 25 98.6 97.8 988

50 97.4 975 985

0 50 9.7 99.1 99.0

% 100 100 99.0 98.6 0987

200 |0 98.5 99.2 99.0

200 98.5 98.6 985

As one can see, the bootstrap approximation is good enough to reach the nominal 90%, 95%
and 99% confidence levels. Therefore, we can say that the bootstrap distribution of the least
squares estimator for the parameter of the random walk process with infinite variance is
approximately equal to the original sampling distribution of the least squares estimator.
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4. Bootstrap Test

In this section, we suggest an alternative test procedure for the unit root test under the
infinite variance assumption. When e« is known, one can use the empirical tables such as

Table 1-3 for the unit test. However, as stated before, we don’t know @, practically. Thus,
there is no reason to use the empirical tables for the unit root test. But the bootstrapping
can play a role to overcome the uncertainty of a. That is, by the fact that, as shown in
section 3, the bootstrapping distribution of the least squares estimator can be used to
approximate the sampling distribution of the least squares estimator for the parameter of the
random walk process with the index @ =(1,2), we can use the bootstrap distribution for the

unit root test. The following is the proposed test procedure.

step 1. Generate B samples of size m using recursive formula in (4) where {&)'s} are iid

random sample from 15;, the empirical distribution of the residuals { 2,'3}.

step 2. Evaluate TH(X*%) = m( aow*b— Jors), =1,2,--.B on each bootstrap sample

xb . ~ .
where  @ors  is the least squares estimate based on {X**} and dors is the

least squares estimate based on the original sample {X}.

step 3. Calculate  ASL yor= g:ll( T{X*<T(X))/B

where I( - ) is an indicator function and T(X) = n( ¢ors—1)

The value A/SI,,OO, is called "estimated bootstrap achieved significance level” in Efron and
Tibshirani(1993). The bootstrap replication B should be at least 1000. See Efron and
Tibshirani(1993) for more details. The smaller the @M is, the stronger the evidence
against Hy : ¢=1 is. So we can reject Hy: ¢=1 if ASL . is less than or equal to the
desired significance level. If ATS’I,,M, is greater than the significance level, then we accept

H,, which amounts to saying that the experimental data do not decisively reject the null

hypothesis.
For example, we generated 200 observations by the rule X,= X, |+¢&, with the index of

stable law a@=1.5. Following is the figure of sirnulated data.
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<Figure 2> Random Walk Process with Infinite Variance

The least squares estimate of dors is 0941. Then using <Table 2> we approximately

obtain p-value 0.015. So we can conclude that this series is not a random walk process.
Now for using bootstrap method we follow the proposed test procedure with B=30,000 and
m=n/2=100. The resulting p-value is 0.027. Figure of bootstrap distribution and empirical
distribution is follows:
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<Figure 3> Empirical Distribution and Bootstrapping Distribution
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5. Concluding Remarks

In time series analysis, the most commonly used transformation is variance-stabilizing and
differencing. In this paper we considered a unit root test closely related differencing. When
variance of error term is infinite, the empirical distributions depend on the index of stable law,
a. To overcome this dependency of unknown index @, we introduced the bootstrap method.
As shown in section 3, the coverage of bootstrapping method turned out to be good enough
so we can use the bootstrap method for various infinite variance random walk process. In
addition, bootstrap test produces a very close p-value to the empirical distribution. When we
take a close look at Figure 3, the left-hand-side tail probabilities of bootstrap distribution
approximate the empirical distribution probabilities very well. As unit root test is an one-side
test in general, this feature is very important. In this paper, we introduced two unit root
tests for infinite variance of errors; empirical distribution and bootstrap method. Simulation
results and example provide a good evidence that bootstrap test is a good alternative for
infinite variance random walk process.
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