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Computational Methods for Detection of Multiple Outliers
in Nonlinear Regression?

Myung—-Wook Kahng?

Abstract

The detection of multiple outliers in nonlinear regression models can be
computationally not feasible. As a compromise approach, we consider the use of
simulated annealing algorithm, an approximate approach to combinatorial optimization.
We show that this method ensures convergence and works well in locating multiple
outliers while reducing computational time.

1. Introduction

In this article we consider the computational methods for detection of multiple outliers for
the nonlinear regression model. We use the likelihood ratio test statistic as an indication of
the prospect of the corresponding observations being outliers. Given mz outliers from »

observations, we consider all ( ";) partitions of the data set obtained by specifying subsets of

size m. If we were to calculate the likelihood ratio test statistic for all partitions of the data,
we would examine their sizes, and the largest test statistic is used to detect the 7 most
likely outlying cases. Thus, identifying the set I of m most likely outlying cases implies
finding the set I that maximizes the test statistics over all possible subsets of size m, which
requires (::;) fittings. Even for modest #, if m is bigger than 2 or 3, this can be very
expensive.

The procedure that generates the optimal subset of size m using an algorithm which
reduces computational time is developed. We also describe a method that does not require

refitting models for every subset and examine its accuracy.
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2. Outliers in Nonlinear Regression

The standard nonlinear regression model can be expressed as

yi=f(xi,0)+6,', 1= 1.2,...,’1,

in which the i-th response ¥; is related to the g-dimensional vector of known explanatory
variable x; through the known model function f, which depends on the p-dimensional
unknown parameter vector 6, and &; is error. We assume that f is continuously
differentiable in @, and errors &; are independent, identically distributed normal random

variables with mean ( and variance . In matrix notation we may write,

y=f(X,0)+e,

where ¥ is an n-dimensional vector with elements ¥, ¥2,°"*, Ya, X is an nXg matrix
: T T T . . . .
with Tows x7, X3,°, X5, € is an n-dimensional vector with elements &;, &,°**, &,, and

F(X.0)=(fx1,0),F(xz, 8),, f(x,,08))7. Suppose we suspect in advance that m

cases indexed by an m-vector I= (Z},%s,*,4,) are outliers. It can be helpful to write the

model as
f(x,-, 0)+8i+€,‘, for iel

f(x;, 8)+¢, for ie 1.
In matrix notation we may write,
y= f(X,0)+Ddé+ e, 2.1

where &= (6,‘1,8{2,“‘,3;_)7‘, D= (dl, dz,'“, dm) and d,' is the ij—th standard basis

vector for R”.
Let e be the n-dimensional ordinary residual vector, where e=y — X, 9) and 0 is

the least squares estimate of 6. We define y;, &5, and e to be m-vectors whose j—th

elements are ¥;;, &;;, and e, respectively. Also we define ¥(;), €y, and ey to be
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vectors ¥, &, and e, respectively, with cases indexed by I deleted. Least squares
estimation of the parameter & will give a value of zero for the residuals indexed by I in
model (2.1). This means that the observations indexed by I will make no contribution to

estimate @, and thus the least squares estimate of & in model (2.1) is the same as that in

the deletion model,

vi= Rx;, 0)+¢e;, foriel o vy = AXy. 0) +e,. (22)

The resulting estimates of 6 from (2.2) or from (2.1) will be called 9(,), from which it is
immediate that &= y;— f(X;, 8,).

The testing of the hypothesis &= 0 is equivalent to testing whether the set I of m

cases are outliers. Thus the outlier identification and testing are formally equivalent to
solving and testing a subset regression. The likelihood ratio statistic for this particular
hypothesis is given by

LR=n[ logS(8, 0)—1logS(8 4y, )1 , (2.3)

where  S(0,8)=(y—f(X,0)—D&)T(y—f(X, 8)—Dé). Significance levels of
likelihood ratio tests can be found either from the asymptotic distribution of LR, which is the
chi-square distribution with degrees of freedom when Hy is true.

3. Simulated Annealing

The simulated annealing approach to combinatorial optimization was developed by
Kirkpatrick, Gelatt, and Vecchi (1983). This algorithm is based on the algorithm by
Metropolis who attempted to simulate the behavior of an ensemble of atoms in equilibdum at
a given temperature. In the statistical context, Bonomi and Lutton (1984) applied it to solve
the traveling salesman problem, Lundy (1985) used it to the construction of evolutionary trees,
and Bohachevsky, Johnson, and Stein (1986) and Haines (1987) applied the algorithm to the
calculation of exact optimum experimental design. Recently, Atkinson and Weisberg (1991)
applied this algorithm to the multiple outlier detection procedure in the linear regression model.
In this section we consider the application of the annealing algorithm to identifying the subset
of m most outlying cases in the nonlinear regression model.
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31 Generalized Simulated Annealing Method

In physics, annealing is a thermal process of heating up a solid until it melts, followed by
cooling it down until it obtains low energy state in a heat bath. Metropolis, Rosenbluth,
Rosenbluth, Teller and Teller (1953) introduced an algorithm for simulating the behavior of the

solid in a heat bath to thermal equilibrium. Suppose that a current state, say ¢, has energy'r

E;, then a subsequent state j is generated. The energy of the next stage is E;. If the
energy difference, E;— E;, is less than or equal to 0, state j is accepted as a current state.

If the energy difference is greater than 0, state j is accepted with a certain probability

which is given by expl (E;—E;)/(¢c,T)] where T denotes the temperature of the heat
bath and ¢, is a constant known as the Boltzman constant. This acceptance rule described
above is the Metropolis criterion and the algorithm that goes with it is known as the
Metropolis algorithm.

By applying the Metropolis algorithm, we can generate a solution for a combinatorial
optimization problem.  Suppose f# is the object function to be minimized or maximized.
Simulated annealing is a convenient way of finding the global extremum of a function that
has many local extrema. The method is a biased random walk that samples the object
function in the space of independent variables. Unlike most optimization methods, the
algorithm moves not only in beneficial directions but also in detrimental directions with some
probability to allow for escape from local extrema. A typical feature of the simulated
annealing algorithm is that, initially, large deteriorations are accepted; as algorithm proceeds,
only small deteriorations are accepted and finally, no deteriorations are accepted. The
conditional acceptance probability depends on the increment or decrement of the object
function, and it becomes smaller as the algorithm proceeds. We say that the system is cooler
if this probability is smaller. Formally, we choose the initial point and calculate the initial

value of object function f;. Next, by using an appropriate method a new point is chosen and
the new value of the object function f; is calculated. A new step is accepted with

probability p given by
1 if Af is in the beneficial direction
exp(—B4f) otherwise

where A4f=f,—fy and B is a control parameter. Thus the beneficial steps are accepted

unconditionally but the detrimental steps are accepted according to the probability 2. The

control parameter A should be chosen to satisfy the properties of the system. Execution of
the algorithm is terminated if the step remains unchanged for a number of consecutive
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searches.
3.2 An Outlier Problem

Atkinson and Weisberg (1991) applied the simulated annealing algorithm to the multiple
outliers detection procedure in linear regression models. This algorithm in linear regression
may not be very useful because exact computations for moderate number of outliers are not
difficult, and methods like least median of squares (Rousseeuw, 1984) are very effective at
finding multiple outliers. These factors do not carry over to the nonlinear model.
Computations are too expensive to do exactly, and there are no well established robust
methods for finding outliers in the literature.

In this subsection, the algorithm of Atkinson and Weisberg (1991) is adopted to work
efficiently in the nonlinear model case. The changes made in the basic algorithm include:
modification of stopping criterion; use of an approximate, easily computed objective function;
and some modification of the basic computational method which requires exact computations
much less frequently. These will be discussed later in this section.

Suppose that the value of # is chosen as a number of outliers. To arrive at the initial
step, we randomly divide # cases into two subsets of m bad (outliers) and n—m good
(inliers). We consider an interchange of a single case currently in the m cases identified as
outliers with a single case in the n—m cases identified as inliers. Our goal is to find a
subset I of size m which maximizes the likelihood ratio test statistic (2.3), that is, which
minimizes logS( 8 (;), §). We will set f= logS( 0, 8)= log(RSS ;) to be the
object function.

Suppose we have fitted the model deleting the current m bad cases indexed by I, and
have calculated residual sum of squares RSS,. If this step is accepted we need to find the

new subset Iy by exchanging a randomly chosen case from the bad group with a randomly

chosen case from the good group and find the new residual sum of squares RSSy. The

change of the object function is

RSS
4 = fros—F o= lo8 5

and the acceptance probability is

1 if 4f<0
p={

exp(—B4f) if 4>0.
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As the algorithm proceeds, the value of B increases so that the acceptance probability
decreases. The control parameter A increases according to a step function using blocks of

n, searches. For the k-th block of », searches, B was fixed at

_ _ok-1_log(0.5) _
g= -2 HELSL, k=12,

where ¢ is a user defined constant. With this control parameter, the probability of
acceptance is 50% in the first block if RSSy= c¢RSS,. In their algorithm, Atkinson and

Weisberg (1991) set a fixed number of blocks prior to the search. In practice, the algorithm
may terminate while the value of the object function is still fluctuating, thus leading to
premature termination and producing erroneous results. This problem can be overcome by
introducing the following rule. The algorithm is terminated if the subset accepted remains
unchanged for 7. consecutive searches. We refer to this rule as the stop criterion and 7.
as the stop parameter.

The behavior of the algorithm depends on the control and stop parameters. If B8 is too
large or ¢ is too small, the rate of cooling is too fast and the conditional acceptance

probability is too small so that local minima may not be avoided. If the parameters #; or
n, are too small, the minimum may not be found to a sufficient degree of accuracy. In our
application, we have found that setting ¢= 1.5~2.0, n,= 50 and ».=25~50 works well

and requires about 200~300 searches. Using these parameters, this algorithm converges to
the global minimum about 30~90% of the time with most being more than 60%. These
percentages are obtained from 12 different data sets each with a different model, each run
over 100 times.

The simulated annealing algorithm does not always get the global minimum of the object
function;, however, if we run this algorithm more than once and keep record of the final

RSS’s and the subset I's, then we can select the subset I which has the smallest final
RSS. This method has a smaller risk in getting a local minimum and still saves the
computational time compared to calculating all possible subsets. With a 60% convergence

rate, if we run this algorithm 5 times the error rate is only about 1% .

Example : The data for this example are taken from Carr (1960) on the reaction rate of the
catalytic isomerization of #»-pentane to isopentane and are reproduced in Table 1. A
proposed model function for these data is
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_ 6163(x2 —X3/1.632)
f(x' 0) o l+¢92x1+03x2+04x3 .

Box and Hill (1974) and Carroll and Ruppert (1984) also analyze these data. Suppose that
three outlying cases exist, then we have the global minimum of the object function or the

global maximum of the likelihood ratio test statistic from subset I= (7,9,24) with
RSS ;7 =1.19072. Figure 1 shows the evolution of the residual sum of squares for 242

exchanges with ¢= 1.5, #,=50 and #.=50. The algorithm converges to the global

minimum of residual sum of squares in 242 searches with 242 fittings. Using this data and
model under the above settings, the algorithm converged to the global maximum in 82 out of
100 trials.

3.3 Speeding Up the Simulated Annealing Algorithm

In this section we consider a modified procedure that speeds up the simulated annealing
algorithm. Suppose that at the current stage we accept the subset [ o with the residual sum

of squares RSS,. Then, we need to choose the new subset Iy by interchanging a case
between the bad and good groups and calculate the residual sum of squares RSS N. Let

N-th case among # cases which is in the outlier group and O-th case among # in the
inlier group be interchanged, that is, the N-th case is added to the good group and the

O-th case is deleted from the good group. Using the linear approximations (A.5) and (A.6),

and with the aid of (A.4), we have the following formula for the distance for the two residual
sum of squares before and after interchanging cases.

ex(1—hoo) — eb(1+hpp) +2hNoeN€o
(1 + k(1 — ko) + o

RSS sy — RSSy = (3.1)
where

eo = yo— f(xo, 9(1.,)_)
ex = yn— f(xy, 9(105)

—

H_{hu} = V ( VT ) IVoTv with V = V(a(lo))— _‘oi 0=B1,"

To avoid refitting the deletion model with new subset Iy, we use (3.1) to get

approximated residual sum of squares RSS,y for the new subset. This approximation,
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RSS 4x, is generally more accurate than the approximated RSS given in (A.6) when the
number of outliers is three or more, since RSSsn is obtained by exchanging one case while

approximated RSS given in (A.6) is obtained by deleting m cases from the full data set.
Thus the test statistic calculated using RSSay has higher degree of accuracy than the one

obtained using the other approximated residual sum of squares or the score test statistic.
The modified procedures are as follows. If the RSSay is larger than RSS,, we reject the

new choice with probability 1—p without refitting the deletion model. If we do not reject

the new choice we refit the deletion model and find the RSSy. For the residual sum of

squares obtained by refitting, we make a decision using the general procedure described in
Section 3.2. In our application, we can save about 30~60% of the computational time with

this procedure while keeping the accuracy as high as that of the general procedure.

Example (continued) : The performance of the modified simulated annealing method is
illustrated in this example. Figure 2 shows the evolution of the residual sum of squares for a
search with same parameters ¢= 1.5, #,=50 and ».=50. The algorithm converges to

the global minimum of residual sum of squares in a similar manner but it requires 129
fittings of the deletion models in 245 searches. For this example, the convergence rate using

the modified procedure is 86% (129 out of 150), which is better than that obtained using the
original algorithm.

4. Comments

We discussed the method for finding the subset I of m most likely outlying cases using
the simulated annealing algorithm. Once we find these cases we need to test whether they
are outliers using the procedures discussed in Section 2. If test turns out to be significant,

m cases indexed by I are outliers. Otherwise, we may consider the following procedures.

We reduce the number of outliers from 72 to m—1 and find m—1 most outlying cases in a
similar fashion. We continue these steps until the test results are significant. In this case,
m is the maximum number of outliers to be tested. The number of outliers or the maximum
number of outliers to check for would depend on the context of the problem and is an area
that needs further research.

The most crucial factors in implementing the simulated annealing algorithm are the choice
of a suitable scheme that exchanges the cases between two groups and an appropriate
conditional acceptance probability that determines the annealing schedule. When the subset



Computational Methods for Detection of Multiple Outliers 9

size is large, single case interchanges are not reliable. There may exist a certain conditional
acceptance probability that is more appropriate for this algorithm. The perturbation schemes
which interchange more than one case and other annealing schedules still need to be explored.

Table 1. Reaction rate for isomerization of #-pentane to ispentane

X, ' partial pressure of hydrogen, X, ! partial pressure of n-pentane,
X3 : partial pressure of isopentane, Y : reaction time

case | X, X, X; Y |Jcase| X, X, X; Y
1 205.8 90.9 371 | 3541 13 | 2973 142.2 105 5.686
2 404.8 929 363 | 2397 14 | 314.0 1467 | 1571 1.193
3 2097 | 1749 494 | 6.694 15 | 3057 1420 86.0 2.648
4 4016 | 187.2 449 | 4722 | 16 | 3001 143.7 90.2 3.303
5 2249 92.7 116.3 | 0.593 17 | 3054 141.1 874 3.054
6 4026 | 102.2 1289 | 0.268 18 | 3052 1415 87.0 3.302
7 21277 | 1869 1344 | 2797 19 | 3001 83.0 66.4 1.271
8 4062 | 1926 1349 | 2451 20 106.6 209.6 330 11648
9 1333 | 1408 876 | 3196 | 21 417.2 839 329 2.002
10 4709 | 1442 869 | 2021 22 | 2510 2944 415 9.604
11 300.0 68.3 817 | 08% | 23 | 2503 148.0 14.7 7.754
12 3016 | 2146 101.7 | 5084 | 24 145.1 291.0 50.2 | 11.590

RSS RSS

3.0 3.0 4

2.5 2.5

2.0 - 2.0

1.5 1 1.5

1.0 4 T T T T ul 1.0 - T ¥ T T |

0 50 100 150 200 250 0 50 100 150 200 250
block 1 2 3 4 s block 1 2 3 4 5
Figure 1. Simulated annealing plot Figure 2. Simulated annealing plot

with approximation
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Appendix

Suppose that f(X, #) is approximately linear in a neighborhood about 8. Then, we

have the following linear Taylor expansion for the cases not included in the subset I,
AX ), 00))= A Xy, )+ V(1y (0, - B), (A1)

where /I;( 7) Is obtained by deleting the m rows from ¥V = V(®) indexed by I. If we

use this approximation (A.1), the residual sum of squares for deletion model can be written as
5(0(1)) = (y(,)—f(X(,), 0(1)))T(y(1)_f(X(1)' 0(1)))
=(yo—AXp, -V ;,(0,— 9))T(-"(n"f(Xu)' 0)= Vi (6,—8)
=(erry= Vi (8.4y— ) (e - V(8- 9) (A.2)
and is minimized at

a(1) = 8 +( /‘;(1) T/I}(I))_l /‘}(1) Te(I)- (A.3)

Let A be a pXp square matrix and let B and C be the matrices of dimension pXm.

Assuming that the inverses exist, Henderson and Searle(1981) verified the following
(A-BC")'= A+ A'B(I,— CTA'B)'CcTA!, (A.4)
With formula (A.4), equation (A.3) is simplified to give a more usual form
Buy=0+(VTV) 'V, T (In—H,) 'e. (A5)
where H ; is the mxXm minor of H= V(VTV)! VT with rows and columns indexed

by I. By substituting (A.5) into (A.2) and with the fact eTV= 0, we have the following

equation after simplification:

S(8¢y, 8)-S(8,0)= —e;"(I,—H) ' e;. (A.6)



