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Influence Functions on x?2 Statistic in
Contingency Tablesv

Honggie Kim2 and Hee-Sook Lee®

Abstract

In a two-way contingency table, the analyst is most interested in the hypotheses of

exther homogeneity or independence. For testing this as a null hypothesis, Pearson’s

% statistic is most commonly used in practice. Once the null hypothesis is rejected,

he will further search for cells Wthh caused the rejection of the null hypothesis. For

this purpose, so called cell x2 components are used. In this paper, we derive the

influence function of an observation to the x? statistic, with which cells with high
influence can be identified.

1. Introduction

Contingency tables are summarized forms of categorical data arising in many research areas
such as social science and humanities. Analyses of these contingency tables were very
primitive until 1960's.

Starting from 1960's, theoretical developments such as log-linear model, correspondence
analysis have been helping researchers have better understanding of their valuable data. In
spite of the excellence of these advanced statistical methods, the theoretical complexities have
been obstacles to the researchers who obtain the raw data and want the last bit of
information contained in the contingency tables.

In an analysis of a two-way contingency table, the first interest will be a hypothesis of
independence between two categorical variables which the rows and columns of contingency
tables consist of, or that of homogeneity among rows of the contingency tables, depending on
the sampling scheme.

The most popular statistic for testing either of these hypotheses as a null one is Pearson’s
x? statistic. The theory is well introduced in most elementary statistical texts. Once the null
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hypothesis is rejected, the next interest of a sophisticated analyst will be investigation of cells
which highly contributed to the rejection of the null hypothesis. For this purpose, cell x?
components are used.

A cell x? component is the square of the difference between the observed and expected cell
frequencies divided by the expected cell frequency. There have been numerous researches on
2?2 statistic and its components. Among them are Irwin (1949), Kimball (1954), Kastenbaum
(1960), and Kass (1980).

The idea of influence function is first introduced by Hampel (1974). Cook and Weisberg
(1980) used this technique in detection of outliers in regression. Critchley (1985) studied
influence in principal component analysis, and Campbell (1978) obtained some interesting
results on influence in discriminant analysis. Kim (1992) derived influence functions in
correspondence analysis, which has been extended to multiple correspondence analysis in Kim
(1994).

By applying Hampel's idea and treating the 22 statistic as a multiplication of matrices, we
will derive the influence of an observation to the 2?2 statistic as a function.

2. Influence Functions

Let N={n} be an (IXJ) contingency table with 2, (i=1,-,I) being the i* row

total, #4; (j=1,,J) being the j* column total and # being the total frequencies in N.

Under the null hypothesis of independence or homogeneity, the expected cell frequency is
given by

_ By Ny
€;= n
and the Pearson’s x2 statistic is then

o b (m—ed)®

i=1j=1 €

The estimated probability matrix P is obtained by dividing the entries of N by #. Let

nit+

i =10 ad o=t j=1]

n

Y=

be the estimated marginal probabilities. Consider the two vectors r={7;} and c={¢;}.

Letting D, and D, be diagonal matrices with » and c¢ as their diagonals, the x? statistic is
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given by (Greenacre, 1984)

X%= n tracel D;N(P—rc)D; Y (P—rc")Y . (1)

We will regard the probability matrix P as known to derive an influence function. When P
is in fact an estimated probability matrix, the influence function is called an empirical
influence function, which is an estimated influence function. Of course, the latter will be the
one we can use in practice.

Define an (IxJ) random matrix Y so that its (7, 7)” element is 1 and others are (

when a randomly chosen subject is classified into % row category and j'h column category.
Let Y have a distribution F, which is multinomial M(1, P). Now, we can see that the
probability matrix P is a functional evaluated on F. That is,

P=EY= f YdF . 2)

Also X? given by (1) is a functional evaluated on F, since X* is a function of P,
Given 7 and j, let »; be an (IxJ) matrix where the (i,7)” element is 1 and the
others are (. That is, ¥; is a realization of the random matrix Y. To measure the influence

of an observation ¥; on X?= T(F), we use the influence function (IF) of Hampel (1974)
which is defined as :

IF(Xz,yg)=léi_r_.{l[ NF)—T(F)] /e
where F.=(1—e&)F+&8,, is a perturbation of F by dy, a measure with point mass one
at ;.
Perturbing F produces a perturbation of P, hence perturbation of XZ2. If we let Xi be the

perturbation of Xz, the influence of the observation ¥; on X? can be measured by
IF(X?, y5) = lim[ Xi-X7 Je . @
To find X2, we replace P, 7, c, D;' and D' in (1) with the corresponding

perturbations, P, , 7. , c. , (D;Y). and (D.'). , with the subscript & meaning a
perturbation.
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The perturbation of P is the functional evaluated on F,. as given by (2). That is,

P. = [ vaF.
= [Yd[ (1-)F+es,]
=(1-o [ YaF+e [ vas,,

Then the perturbations of 7 is
r. =P.1
=(1—&r+tey;,

where ; is an (Ix1) unit vector with i* element 1. And

c. =P 1
=(1—¢&)ctey;,

where ¥; is a (JXx1) unit vector with i™* element 1.

Consequently,
P—r.ct=(1—(P—rc)+e(y;+rc'—mi—yc) +O0(e?) .
As in Kim (1992),

(DY), = diag(r)] !
=(1+e)D:1—s—:_fdiag(y,-)+0(sZ)

and
(D7, =0 Jre)zagl—ezlf diag(y) +O(£%) .
j
If we let

M= D;(P—rc" DY (P—rch)*,

the x? statistic given in (1) is
X%=n trace(M) .
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The influence function given by (3) becomes

IF(X?, v) = 133[ n trace( M) —n trace(M)] /e (4

where M.=(D; )P, —rc DY) (P.—rch)".
Expanding M., gives
M= M+e(A+A,+Az+A)+ (&%)

where
Ay === diag(y)(P=re)D; (P—rc)’
A= D; (yi+rc'—mi—yc)D;(P—rct)*
Az=— c%, D; Y P—rc)diag(y;)(P—rch)!
Ay=D; N (P—rc D (y+cr'—yr'— o)) .

Note that A; , A, , A; and A, are all (IxI) square matrices.

The influence function given by (4) now becomes,

IF(X?, y5) =mn lim{ trace(M,) —trace(M)] /e
=n lim[ trace( M.—M)] /e

=n trace(A1 +A2+A3+A4)
=nl trace(A,) +trace( A,) + trace( A;) + trace( A,))

Through a careful matrix algebra, we can obtain

— )

¥ij=1 Yic;
trace(Ay) = trace(A) =T
™~
_ 1 & (Py—re)?
trace( A;) = c 2:1——7;6;

Hence, the influence function will be

Pi—r.c; (P"_r'C')Z I (P..—r.c.)z
N g i n i i n ] i<
X, y)=2n ¥iCj ¥ iél Yic; Cj E 1 riC;
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This function will measure the instantaneous rate of change in 1% statistic when an
observation is added to the contingency table. The true change in x? statistic when an
observation is added to the contingency table can now be estimated by

2 1
IF(X ,y,;,-)X n+1 , (5) .

since IF(X?% y;) plays the role of f'(x) and plays the role of Jx in differential

1
n+1

calculus. For more detail, refer Cook and Weisberg (1982).

3. Numerical Example

Table 1 contains 8 X5 contingency table taken from Guttman (1971). It represent 1554 Israeli
adults cross—classified according to their types of principal worries (rows), and country of
origin (columns). The data are also used by Greenacre (1984) to illustrate correspondence
analysis. The 2?2 statistic computed from this contingency table is 120.44.

Table 2 shows the estimated changes in x? statistic computed through (5) along with the
true changes, which are obtained recomputing the 22 statistic after adding an observation to
each cell after cell.

As an example, when we use frequency 62 instead of 61 for the cell (1,1), the x? statistic
decreases by 0.0817, which can be estimated by 0.0924.

The product moment correlation between the estimated changes and the true changes is
0.9337. Without two cells, cell (53) and cell (55), the product moment correlation becomes
0.9881. This proves the adequacy of our influence function as a measure of instantaneous rate
of change in 12 statistic when an observation is added to the contingency table. If we extend
this result to the whole observations in a cell, we may be able to suggest a measure
competitive to the widely used cell 12 components.

4. Comments

Note that we used the estimated probability matrix. That is, we used empirical influence
function. We thank the referee for his/her useful comments to improve this paper.
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Table 1. Principal worries of Israeli adults. Description of categories of variable B, country of
origin, is given at the foot of the table.

Country of origin (B)

Principal worry (A) 1 2 3 4 5
Enlisted relative (1) 61 104 8 22

Sabotage (2) 70 117 9 24 7
Military situation (3) 97 218 12 28 14
Political situation (4) 32 18 6 28 7
Economic situation (5) 4 11 1 2 1
Other (6) 81 128 14 52 12
More than one worry (7) 20 42 2 6 0

Personal economics (8) 104 48 14 6 9
1: From Asia or Africa

2! From Europe or America

3: From Israel and their father from Asia or Africa

4: From Israel and their father from Europe or America

5: From Israel and their father from Israel

Table 2. Estimated changes and true changes in 2% statistic when an observation is added

I
0 1 2 3 4 5

TOW

: ~0.0924 0.0040 02168 ~0.1951 ~06731

-0.0817 0.0086 ~0.1164 -0.1598 -0.5423

, ~0.0681 ~0.0121 20.314 0.2676 ~0.3414

~0.0588 -0.0079 -0.1438 -0.2363 -0.2337

5 04025 0.2527 205999 08215 0.0267

~0.3959 0.2545 ~0.5443 ~0.7996 00812

) -1.0953 0.2979 07135 0.3510 -0.1078

~1.0780 03012 05997 03825 0.0155

- ~0.7640 0.1910 0.3317 03237 0.8414

-0.6160 0.2279 1.4030 0.0684 2.1041

; ~0.2886 ~0.3339 0.1510 1.0017 0.2310

~0.2806 -0.3295 0.2110 1.0160 0.3017

. ~0.2819 0.2583 08164 ~0.6806 ~2.1466

-0.2476 0.2678 ~0.4967 ~0,5659 17222

. 1.1400 14115 0.9965 ~1.0065 0.2224

1.1437 ~1.3994 1.0747 -0.9634 0.3341
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