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On the AR(1) Process with Stochastic Coefficientl)

Sun Y. Hwang?2)

Abstract

This paper is concerned with an estimation problem for the AR(1) process
(Y, t=0, £1, -} with time varying autoregressive coefficient, where coefficient

itself is also stochastic process. Attention is directed to the problem of finding a
consistent estimator of ¢, the mean level of autoregressive coefficient. The
asymptotic distribution of the resulting consistent estimator of ¢ is then discussed.

We do not assume any time series model for the time varying autoregressive
coefficient.

1. Introduction

Consider the following AR(1) process { Y,, ¢t=0, %1, -} with time varying autoregressive

coefficient

Yt= (¢ + ¢t) Y:—l +¢&,, 1.1
where { ¢,} represents unobservable random perturbations of the coefficient, { &} and { ¢,} are
independent processes with zero mean and finite second moments. When {¢,) is d, (1.1)

reduces to the first order random coefficient autoregressive model (RCA(1)) which has been
fully exploited by Nicholls and Quinn (1982). To handle the case where the dependence

structure in { ¢,} does exist, several attempts have been made. Among them, see Tjostheim
(1986) : MA(1) structure for { ¢,} and Weiss(1985) : AR(1) structure for { #:). One may
follow state-space-form(SSF) approach when { ¢,} is a Markov process.(See Harvey (1989)).

In this paper, We do not assume any specific models for { ¢ but impose the following
fairly mild restriction on ¢, :

{ ¢} is a stationary and ergodic sequence in Lz (1.2)
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The stationary condition of the model specified by (1.1) and (1.2) are studied by Pourahmadi
(1986). See Pourahmadi (1986) for the condition and several examples therein. However due to

complications arising from the interactions between two processes {¢,} and {&;}, he did not

mention any estimation and inferential problems. To our knowledge, this kinds of problems
have not yet been addressed in the literature. The primary goal of this paper is to discuss the
estimation problem for this model.

By recursion, Y; in (1.1) can be written in terms of a casual form
o j=1
Y,= ZO[ LIO(¢ +¢t—-i)] Er—j . 1.3

In order for the expression (1.3) to be meaningful not only in Le-sense but also in almost
sure sense, we need the following stationarity condition due to Pourahmadi (1986).

EOE[ EW + ¢ )% (oo 1.4)

Notice that under the condition (1.4), the { Y} in (1.3) is strictly stationary and ergodic in

Lo.
Remark : For the usual AR(1) process, ie., ¢,=0 case, (14) is equivalent to |¢| < 1.

When { ¢,} is #id, the model becomes RCA(1) and (1.4) reduces to

¢2 + Var(¢y) < 1 15)

as in the Nicholls and Quinn (1982).
The condition (1.4) will be assumed throughout so that {Y,} is ergodic stationary process in

La.

2. Estimation Problem for ¢

Let {Y;, Yi, - ,Y,} be a given sample from the model defined by (1.1) and (1.2) and
the o-field generated by { Yy, Y, -+, Y,} is denoted by %..

It must be emphasized that for the special case when {¢,} is #d (RCA(1)), ¢, is
independent of Y,_;, Y. 5, --. However, this is not the case, in general, because Y, is a
function of (@,-;, €—1), (Ps—2, €:_3), . Consequently, E(¢, Y7 1), r=1,2,3, - can

not be factored out of the form E(¢,) - E(Y7_;) . Now, the model in (1.1) can be written as

Y,=¢Y,, + with 7= ¢ Y, 1+ e& 2.1)
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and after simple algebra, it is seen that E(¢,Y,-;) =0 and hence E(7,) =0. We are then

tempted to estimate ¢ by ¢, via least squares method,

f;: Y, Yo/ 2 Y%—l , 2.2)

where the subscript in 2, runs from t=1 to t=n and this notation will be used throughout.
It can also be shown that

an —¢= 2(¢t Yg—l +e&Yi, I Yg-l

Via the ergodic theorem, it then follows
3, —25 $+E(, Y2 )/ A0) , @23)

where 7{0) stands for the autocorrelation function of lag 0, ie,
H0) = E(Y?) .

Thus, from (2.3), we have the following.

Lemma 2.1 : For the process modelled by (1.1) and (1.2) with (1.4), the asymptotic bias of
the least squares estimator &, in (2.2) is E(é,Y% )/ K0).

Remark : If ¢, is uncorrelated with Y%_l which is true for RCA(1), &, is a consistent

estimator of ¢. However, the bias never vanishes, in general, under our framework and it
seems hard to find a closed form of the bias due to the lack of information about the
dependence structure of { ¢,}.

&, can be improved further by considering

$— XY /DY, (2.4)

From (2.3) and the ergodic theorem the term in (2.4) is seen to be consistent for ¢.
However, due to the fact that { ¢} is unobservable, ¢, in (2.4) must be replaced by sample

information.
It is then natural to consider the best predictor (in the MSE sense) of ¢; based on

Yy, Y, -, Y,, which leads to

—~

$r= 8.~ Z{E(¢)%) - Y2}/ ZY?, . 25)

The consistency of ¢, is presented in the following theorem.
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Theorem 2.1 : Under the same conditions as in lemma 2.1, we have

g —2> ¢, as n—o oo, (2.6)
proof : It suffices to show that
n D E($d%) - Vi,
=n 'S E($, Y2 1%) —L E(¢,YL) . @D
Using the conditional Jensen’s inequality, we have with probability one,
|n "2 E($, V%) — E($.Yi 1)l
< E(In"'2¢,Yi — E($.Yi )l % . 28
By taking the expectation on both sides of (2.8), it follows that
Eln "X E($:Yi,|%) — E(¢:Yi-)|
< Eln'2¢,Yi, — E(4,Y0) . (2.9)
Furthermore, the ergodic theorem gives
n S Ve —— E(4,Yi)
which leads to via (2.9)
n VS E($ V%) — s E($,Y
and hence (2.7) holds, which completes the proof
From the practical point of view, q?:,\ in (25) still suffers two drawbacks. First, the direct
calculation of E(@,]% ) seems complicated since the joint distribution of ¢; and

Y,, Y, -+, Y, is not known. Second, even when a simple form of E(@,%.) is available, it

may contain some parameters to be estimated.
In the next section, by assuming linear structure on the conditional expectation of ¢, given

the sample, these drawbacks will be circumvented at the cost of losing the generality.

3. Limiting distribution of a consistent estimator of ¢

Recalling the representation in (2.1) and motivated by the format of ARCH modelling in
Engles (1982), we postulate that E(¢,|%:-1 ) is described by the following linear predictor

type condition.
(C1) E(¢d#1) = B Yy +BYip+ - +8,Y,,,
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Denoting
B = (B, Bz, = .B,) : px1 vector of unknown constants (3.1)

and Y(t—1) = (Y, Yig, -+, Yip) : pX1 vector (32)
(C1) can be written as

E($)%1) = B Y1) .
The conditional least squares (CLS) estimators @, and B, of ¢ and B respectively are

then obtained by minimizing
Q=22 Y, —E(Y,|%1)] ?
=3[ Y, —¢Y - Y-V, ] °?

with the understanding that Y_,,; = - Y_; = (.
It can then be shown that
(g”) = V;'X,, (3.3)
where .
Vo= ¥y L), . tl:(1t)-1/1()t—1)') ! (p+1) X (p+1) matrix (3.4)
- 1 .
X, = ZY,YH(Y( t~—1)) : (p+1)X1 vector (35)

In order to obtain the asymptotic distribution of ( 3,, , B,,’ )', we need the following

condition.

(C2) EY ¢ o

We now turn our attention to the estimation bias
(£ = x i)

After some algebra, it can be shown that

8.\ _ (9 = (n1y)-1l _ 1
( Bn) (B) - (n IV,,) IW[ E(Yt E( Y;I?t—l)yt_l(y(t_l))] . (3.6)

By applying martingale CLT for stationary martingale differences (see Hall and Heyde
(1980)), the second term on the right of (3.6) converges in distribution to (p+1) variate normal
distribution with mean zero and variance-covariance matrix I~ with
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I = Varl(¥, — B¥I%) Yo (y )

Y(t—1) )] . (37)

== E[ Yt—l Var( Ytlgt‘l ) ( Y(t_l) Y(t—-l) Y(t'—l)’

It may be noted that the existence of I can be guarantted by (C2). We are now in &
position to present the following theorem.

Theorem 3.1 : Under conditions (C1) and (C2), we have
\/Z[ (g) —(;‘g)] —4, N(o, VIrvY, (38)
where
V = pim{n 'V,
and I is defined as in (3.7).

proof : First note that the consistency of a,, is a consequence of the theorem. Combining

(3.6) and (3.7), and using the ergodic theorem the proof is immediate.

4. Concluding Remarks

In this paper, we have discussed the estimation problem for the AR(1) process with time

varying autoregressive coefficient ¢, where any time series model has not been assumed for
¢, The usual estimator for ¢, the mean level of ¢, turns out to be inconsistent and a

consistent estimator of ¢ is suggested and relevant limiting distributions can be obtained.
The generalization of this study is twofold: First, one may extend the results to p-order
process. Second, it could be possible to derive a consistent estimator of ¢ without imposing

linear predictor type condition(C1). These extentions will be left open problems for the future
study.
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