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Smoothing Mean Residual Life with Censored Datal)

Dong-Myung Jeong?), Myung-Unn Song3) and Jae-Kee Song4)

Abstract

We propose a smoothing estimator of mean residual life function based on Ghorai and
Susarla’s (1990) smooth estimator of distribution function under random censorship
model and provide the asymptotic properties of this estimator. The Monte Carlo
simulation is performed to compare the proposed estimator with the other estimators and
an example is also given using the real data.

1. Introduction

Let T be a nonnegative random variable with continuous distribution function F and let us

define the mean residual life(MRL) function or remaining life expectancy at age x as

e(t) E{T—¢t|T)>t}

= Sty St au

for S(¢) > 0, where S(¢) = 1—F(¢) is the survival function of 7 and e(f) = 0
whenever S(¢) = 0. Note that e(#) is the mean of the remaining lifetime given survival
up to time { and is the usual mean if #=(, and uniquely determines the distribution
function F via an inversion formula (See, Hall and Wellner (1981)). The MRL plays very

important role in many practical engineering areas and in other applications such as actuarial
science and medical research. Hence the estimation problem of MRL function has been
investigated by many authors.

In the case of the complete data, Yang (1978) showed that the empirical estimator of MRL
function is asymptotically unbiased, uniformly strong consistent, and converges weakly to a
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Gaussian Process. Shorack and Wellner (1986) treated estimation of MRL function under an
uncensored model. In the present of censoring, the estimation of MRL function has been
studied by many authors including Yang (1977), Kumazawa (1987) and Ghorai and Rejto
(1987), and so on.

Let Ty, T, -, T,, be independent and identically distributed (i.7.d.) random variables
(r.v.’s) with continuous distribution function (df) F, and let C,, Cy, -+, C,, be i.i.d.
rv.'s with df. G. Suppose that the two sequences {7T;}%7=; and {C;}%-, are independent.
We will refer to the T ’s as lifetimes and to the C;’s as censoring times. In the random

censorship model from the right, the 7's may be censored on the right by the C's, so that
we only observe the pairs (X, 8;), 1=1,2,,mn, where X;= (T;AC;) and

8; = I(T;<C;). Here and in the sequel, I(A) denotes the indicator function of the event

A and aAb= min(a, b). Thus the observed times X'sare i.i.d. rv's with df H
given by H(x)=1—{1—-F(x)}{1 —G(x)} for 0 < x<{ o0,

Under random censorship model, the MRL function may be written as

o) = < [ S 8

for S(x) > 0, where rr = sup{x: F(x)<1}. Yang (1977) proposed the Nelson-Aalen type

estimator ¢ for (1) which is defined by

ANA(x) = —NA—I §NA(t)dt

S

where X' = max j<i<s X; and S NA — exp(— ZA), A is the Nelson-Aalen estimator of

the cumulative hazard function A(x)= —InS(x) (See, Nelson (1972) and Aalen (1978)).

. . ~ANA
She also proved the uniformly strong consistency and weak convergence results of e .

Kumazawa (1987) extended the definition of the process based on Yang's (1977) estimator
and constructed the Kaplan—-Meier type estimator e KM for (1) defined as

é\KM(x) _

gKM( )f S™(#)ar ,

where S§™ is the Kaplan-Meier estimator (See, Kaplan and Meier (1958)) of S. He also
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provided under some regularity conditions of the weak convergence of the process over the
whole line by using the counting processes and established the asymptotic confidence bands

for & ™, On the other hand, Ghorai and Susarla (1990) proposed a kernel estimator of F

based on the kernel estimator of density function and also derived the optimal asymptotic
properties.

In this paper, we introduce a smoothing estimator of MRL function based on Ghorai and
Susarla’s estimator of [ under random censorship model and prove uniform consistency and

weak convergence results. We also compare the performances of the proposed estimators
using Monte Carlo simulation, and illustrate an example using the leukemia data.

2. Main Results

With random censored data, Ghorai and Susarla (1990) proposed a kernel estimator of d.f.
F by smoothing the Kaplan-Meier estimator, which is defined by

F(x) = fhi,, k(x—,::v-) F™()ay ,

where k, is a bandwidth or a smoothing parameter and %( - ) is a kernel function. The

following two lemmas due to Ghorai and Susarla are needed to develop the properties of the
our estimator.

Lemma 2.1. Suppose that the kernel % is a bounded probability density function which
has finite support and a symmetric about zero. Let, for some positive integer m > 1,

(@) lim A""'(n/loglogn)? = 0,
70

(i) either sup,| f(x)| (e or f | £ (x) | dx < 0.
Then as n—o0,

SUp gepcrp | F(x)—F(x)| —B— 0.

Lemma 2.2. If Ynh — 0 as # — o and | £ | is integrable. Then as # — oo,

Vrn (F—F} d , z, (2)

where Z is a zero mean Gaussian process with covariance function
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Cov{Z(s), Z(t)} = S(S)S(’)fow s(u)gi{l(-z—‘z;(u))2

By substituting the smoothing estimator F(x) for F(x) in MRL function, we propose a

smoothing estimator e(x) given by

e(x) = §1(x) LX§(u)du , (3

where S(x) =1— F(x).

Now from the Lemmas 2.1 and 2.2, we obtain the following main asymptotic results of (3).
Theorem 2.1. Suppose ﬁfx‘ S(x)dx —B> (. Then as # — o,

SUP g<x< ry | e(x) —e(x) | —2 ., 9.

Proof. For a fixed x€[ 0, zr ),

| dw —en) | = | b [ St — by st |

= 1SS | sG) [T 18-St

(S-S [["star — st [ /St |
< 1SS (56 [18-swar

+1SG) -S@1 [ s + s@) [ [Srar).

By combining the consistency result of S with partial integration, the first and second terms

of the right-hand side of the inequality converge to zero in probability. On the other hand,
the main part of third term is rewritten as

ﬁf; S(t)dt = \/ZJ: {S(t) — S(t)}at — ﬂf;S(t)dt _

From Lemma 2.1 and the above assumption of this theorem, the third term converge to zero
in probability. Thus the result follows. [
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Theorem 2.2. Suppose ﬁfx’ S(x)dx —B> 0 . Thenas n — oo,

Va{é—e} -4 w,

where W is a mean zero Gaussion process and is given by

W) = (G [ st [ znd - 2t [ swar |

Proof. For a fixed x [ 0, ¢ ),
A _ 1 X 1 tr
Vr (e@) —et) = Va (gl [ Swat — by [Tsar)
= (SWSW) ! (S6) [ Va (S-St
~ VA (S =S [s(har — S [ Shrat ).

Now let D[ 0,zr) be the space of functions on the interval [ 0, rr) that are right
continuous and have left-hand limits. Let d be the Skorohod metric on D[ 0, zr), and

let us define amap H: D[ 0,zr) = D[ 0, zr) by having
HZ)(x) = St [ 26— 2(x) [ Syt

for Ze D[ 0,rr), where the limiting distribution Z is defined in (2). Then H is a

continuous map with respect to d. Thus by the Lemma 22, continuity theorem in
Billingsley(1968) and the above assumption of this theorem, the result follows. []

Remark. The covariance function of the limit distribution W ( - ) defined in Theorem 2.2
is given by, for 0 <s<i#{ rp,

Cov{W (s), W(8)} = {(S(s)S(#)} 2 [ S(s)S(t)E( fsrﬁjtrFZ(u)Z(v)dudv)
+ E(Z()Z(1)) [ S(w)db [ S(au)du
- S(s)J;rFS(u)duE(Z(t)j;rFZ(v)dv)

_S(t)JSJFS(U)dvE(Z(s)J;TFZ(u)du) ]
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3. Simulation Studies

In this section, a Monte Carlo simulation studies were carried out to compare the
performances of the proposed estimator with the Kaplan-Meier type estimator and the
Nelson-Aalen type estimator in terms of bias and estimated mean squared error(MSE).

The simulation scheme is designed with various sample of size (# = 10, 20 and 30) and
the lifetime distribution (increasing, decreasing and constant failure rate). In each simulation,
failure times with weibull distributions were generated. These values were then subject to be
censored to the right by independent and exponentially distributed random variate with hazard
rate of 0.067, 0.429 and 0(.866. Here the values of hazard rates were calculated to make
censoring rate to be 10%, 30% and 50%, respectively. This simulation procedure is repeated
500 times in order to get estimates of bias and MSE of the three type estimators. To
construct the smoothing estimator of MRL function, we use the Epanechinikov kernel

3 ( 1.2 .
e 1——x) if |x < V5,
k(x) = { 4vo 0
0 otherwise .
Since the optimum choice of the bandwidth depends on the unknown density and its
derivatives, the bandwidth is optimally selected at each time point, with which the MSE of
the smoothing estimator is minimized.

Simulation results are tabulated in Tables 1-3. In tables, the values of estimates, biases
and MSE's of the three type estimators are given at time points corresponding to quantiles of
0.1,0.3,0.5,0.7,0.9.

In our simulation studies, we may see the following results : (1) In general, the estimators
look like to be under-estimated because of truncation beyond the largest observed value X
in calculating of the MRL function estimator. (2) In each quantile point, the MSE’s of
proposed estimator are decreased as the sample size increases and censoring rate decreases. In
particular, the proposed estimator gets much larger MSE’s at upper tail points. (3) For almost
all cases, the MSE's of the proposed estimator are smaller than those of the other estimators.
Hence the smoothing estimator is slightly better than the Kaplan—-Meier type estimator and
the Nelson—-Aalen type estimator in terms of MSE.
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Table 1. Biases and MSE's of ¢ ™, ¢™ and é

under decreasing failure rate model

( F: Weib(1.0,0.5), G:Exp(0.067), Censoring rate : 10% )

N =10 N =20 N =30
pt TYPE TRUE | EST BIAS MSE EST BIAS MSE EST BIAS MSE

KM 1.883 -.320 1.4904 1.955 -.256 1.0735 2.016 -.195 7149
0.1 NA 2.211 2.173 -.038 1.8957 2.188 -.023 1.3166 2.215 .004 .8350
SM 1.859 -.352 1.4434 1.924 -.287 1.0438 1.988 -.222 7126
KM 2.329 -.384 2.3937 2.387 -.326 1.7198 2.485 -.228 1.1943
0.3 NA 2,713 | 2.662 -.051 3.0074 2.666 -.047 2.0800 2.728 .015 1.4020
SM 2.484 -.229 1.9604 2.576 -.137 1.4006 2.678 -.035 9827
KM 2.809 -.577 4.0611 2,922 -.464 2.9417 3.031 -.355 2.0452
0.5 NA 3.386 | 3.177 -.210 4.9597 3.262 -.125 3.4750 3.336 -.050 2.3459
SM 3.192 -.194 2.6648 3.099 -.287 1.7779 3.245 -.142 1.179%
KM 3.314 -1.094 9.8606 3.606 -.802 6.9005 3.840 -.568 b5.0466
0.7 NA 4.408 | 3.618 -.790 10.9162 4.007 -.401 7.7613 4.234 -.174 5.6280
SM 3.219 -1.118 5.6213 3.629 -.779 3.2038 3.966 -.442 1.7881
KM 2.149 -4.456 35.0769 3.307 -3.298 28. 3389 4.194 -2.412 23.5819
0.9 NA 6.605 | 2.201 -4.404 35.0576 3.469 -3.135 28.6828 4.450 -2.155 23.9420
SM 1.758 -4.847 29.9938 2.831 -3.773 22. 4474 3.709 -2.896 15.4063

Table 2. Biases and MSE’s of ¢, é™ and &

under constant failure rate model

( F: Weib(1.0,1.0), G:Exp(0.429), Censoring rate : 30% )

N =10 N =20 N =230
pt TYPE TRUE EST BIAS MSE EST BIAS MSE EST BIAS MSE
KM .918 -.082 .1364 .935 -.065 .0824 .966 -.034 .0508
0.1 NA 1.000 .992 -.008 .1489 .994 -.007 .0909 1.017 .017 .0566
SM 1.005 .005 .1210 1.002  .001 .0746 1.002  .002 .0490
KM .912 -.088 .1960 .913 -.084 .1132 .967 -.034 .0811
0.3 NA 1.000 .987 -.013 .2116 .982 -.018 .1247 1.027 .027 .0918
SM .974 -.026 .1383 1.007 .007 .0840 1.027 .027 .0585
KM .849 -.151 2942 .878 -.122 .1692 .941 -.059 (1192
0.5 NA 1.000 L917 -.083  .3104 .949 -.051 .1834 1.010 .010 .1308
SM .866 -.134 .1884 .961 -.039 1058 .980 -.020 .0708
KM .682 -.318 .4678 .782 -.218 .3069 .915 -.085 .2408
0.7 NA 1.000 .714 -.286 .4807 .842 -.158 .3227 .986 -.014 .2570
SM .631 -.368 .3734 .830 -.170 .2145 .870 -.130 .1170
KM .203 -.797 .8482 .339 -.661 7574 .526 -.474 .6361
0.9 NA 1.000 .206 -.764 .8495 .348 -.652 .7611 .538 -.462 .6354
SM .172 -.828 .8145 .286 -.714 .6920 .435 -.585 .5188
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Table 3. Biases and MSE's of e KM, e NA and e

under increasing failure rate model

( F: Weib(1.0,2.0), G:Exp(0.866), Censoring rate : 50% )

=10 N =20 N =30
pt TYPE TRUE EST BIAS MSE EST BIAS MSE EST BIAS MSE
KM .598 -.038 .0391 .615 -.021 .0213 .625 -.012 .0127
0.1 NA .636 .634 -.002 .0401 .644 008 .0227 .651 .015 .0139
SM .640 .003 .0307 .647 010 .0174 .646 .003 .0122
KM .473 -.032 .0498 .477 -.027 .0240 .494 -.010 .0172
0.3 NA .504 .502 -.002 .0515 .507 .003 .0260 .623  .019 .0192
SM .498 -.015 .0336 .617 .012 0185 .524 .020 .0134
KM .352 -.072 .0608 .382 -.042 0325 .405 -.018 .0215
0.5 NA .424 .3712 -.052 .0621 .409 -.014 .0346 .436 .012 .0237
SM .341 -.082 .0444 .391 -.032 .0231 .439 .015 .0155
KM .215 -.141 .0702 .271 -.086 .0498 .322 -.034 .0357
0.7 NA .357 .228 -.135 .0712 .287 -.070 .0514 .345 -.011 .0376
SM .194 -.163 .0613 .258 -.098 .0380 .325 -.032 .0235
KM .049 -.233 .0708 .086 -.197 .0649 .131 -.152 .0568
0.9 NA .282 .050 -.233 .0710 .088 ~-.195 .0652 .134 -.149 0570
SM .043 -.240 .0688 .072 -.210 0602 .118 -.165 .0490

4. An Ilustration

As an example, let us consider the well-known acute myelogenous leukemia (AML) data of
Embury et al. (1977), which consist of length of remission, in weeks, of maintained group and
nonmaintained group. The first group received maintenance chemotherapy; the second group

did not. In this example, we use only nonmaintained group data, which are censored 1 of
the 12 observation. The data are as follows : 5,5, 8,8, 12, 167, 23, 27, 30, 33, 43, 45,

where * denotes a censored.

Figure 1 displays the Kaplan-Meier estimator and Ghorai and Susarla’s kernel estimator
with k,=3 of the survival function. In this Figure, the kernel estimates are well smoothed,

and are larger than the Kaplan-Meier estimates at each time points. Figure 2 presents the
three estimators, the Kaplna-Meier type estimator, the Nelson-Aalen type estimator, and the
smoothing estimator, of MRL function. From this we may see that the smoothing estimates
are slightly larger than the other estimates for all time points.
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