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On Effect of Nonnormality on Size of Test
for Dimensionality in Discriminant Analysis

Changha Hwangl)

Abstract

In discriminant analysis the procedures commonly used to estimate the
dimensionality involve testing a sequence of dimensionality hypotheses. There is a
problem with the size of the test since dimensionality hypotheses are tested
sequentially and thus they are actually conditional tests. The focus of this paper is to
investigate in asymptotic sense what happens to the sequential testing procedure if
the assumption of normality does not hold.

1. Introduction

In discriminant analysis, the study of dimensionality is quite interesting since it determines
the number of discriminant functions required to describe group differences. The procedures
commonly used to estimate this dimensionality involve testing a sequence of dimensionality
hypotheses. These hypotheses are tested sequentially and thus they are actually conditional
tests; that is, we test H, after we have tested and rejected the hypotheses Hj,

H,, -, H,_; in sequence. There is a problem with the size of the test since successive

tests are not independent. Hwang(1995b) showed that the size of test is not affected
asymptotically under the normality. The focus of this paper is to investigate in asymptotic
sense "How is the size of the test affected under nonnormality by viewing this sequence of
tests as conditional tests?”.

2. Main Result

Let yu, ", vy (i=1,-,p) be iid. mXx1 absolutely continuous random vectors with
mean g;, covariance matrix 2 and finite fourth moments. Suppose that the samples are

independent across populations. Let ;,— be the sample mean of the ¢; observations in the 17
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th sample and ¥ be the sample mean of all # observations, (# = X?.;¢;). Then matrices
A and B are defined as

A= 21 a(y;— y)(y;,— ) and B= glg:l(yii— y)(ys;— ).

The matrix Q is defined as Q= X', q;(pu;— p)(p;— p), where pu=
L3¢ a;pn;. From now on, we will assume that p2m+1 so that AB™ has m
nonzero eigenvalues f; > . > f,, > 0. For the asymptotic theory there is no loss of
generality in assuming that Q is the diagonal matrix defined by Q = diag!{ wy, -, w,, },
Q=00 and X= 1, where no=mn—p and 6 is the fixed matrix defined by
0= diag{ 6,,.--,0,,} . This means that we consider the case where A, B, £, and X
are already transformed to canonical form. Thus, the dimensionality is the rank of Q.

In practice, to determine the number of useful discriminant functions we test the sequence
of dimensionality hypotheses,

Hki 6k+1 = e = 0,,, = (ak > 0), k=10,1,,m—1.
By testing these hypotheses sequentially they are actually conditional tests. We test H, given

we have tested and rejected H,, H;, -**, H,_1, keeping in mind the effect on the significance
level(the size of test). The likelihood ratio test statistic for H, is given by

Ti=m 3 log(1+£)

where f;> > f.> 0 are the eigenvalues of AB™'. For nonnormal populations, the
asymptotic distribution of T is Xm-#m_#» When H, is true. See for details Hwang(1994).

For our purpose, we need ‘the following asymptotic expansion of test statistic T%:

m _1
Tpy=ny 25 log(l+6) +{VmC+D+ 0, n 2),

f=k+1
where
& E i(n) —6,Un)
C= 2, 1+6
D= m F (n) ko Ein)?

i=k+1 (1 + 6;) - igl i=2k+1 (1 + 0,)(0, - 0,)

n Zk m 46,E”(n) Uu(n) _ 2” " E{m)Uyn)
=1 j=k+1 (1 + 0,)(1 + 0;)(0, - 0,) i=k+1 j=k+1 1 +6)1 + 0’)
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koo 0,0, —26; — ) Uﬁ(”)z < m  0(6; +2) U(;(n)2
T A AT T NG =08) T Z 2 20T 0+ 6)

m m E'.’.( n) 2
i=§+1 i=2k+1 2(1 +6)(1 +86)

Furthermore, E;(n), F3(n), and Ug(n) are the ijth element of matrices E(n), F(n),
and U(n) defined as follows:

Em = A Fal(ei-e)ui—a) +(ui— w)(&-2)),
Fn) = £ ai(zi- 2)E—2),
U = A% X [(es— a:)(es— &) = Lal,

where ¥,= p,+ €;,, y= p+ &, E.-=%i2}"'=lei,-, and €= 13%  q,6;. See for

details Hwang(1995a).

Theorem 1 For each i=1,-,p, let y;:mx1l,j=1,,q; be a sequence of iid.
random vectors drawn from m multivariate elliptical populations with parameter g,

covariance matrix JI,, and finite fourth moments. Suppose that the p sequences are
independent and put

ny 3 log(1 +fi)

i=k+1

T,

Vi= [Ti—m > tog(1 +6))]

=B+l
Then under H,, T, is asymptotically independent of V;, j=20,1, -+, &—1.
Proof From the expansions of Ty, Ty, -**, T under H, we form two subvectors =z,

and z,, where z; contains the \/q_l € ;. variables which make up T, and 2z, contains the
Vai; € ;.. and V!l'l-'z?-l (&, —1) variables which make up V;, Vi, -, Vi_1. Specifically,

z = (\/Z'Ei-kﬂ- "t \/q_igi-m)’
z; = (Yaiein, ., Vaieiw V!Z §1(€%ﬂ-1). V% g:l(*?%;k‘l))'

and define z= (z,’, 2,’)". Here, €, €; and & are denoted by

sl] = (Elﬂ ’ .“» Eﬁm)': El = (—s-lll “.) Elm), and E= (_gls ‘“, E..m)',
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where &;,= %‘.Z}tleijr and e ,= % i=124j=1&4», ¥=1, -, m. By the Multivariate

Central Limit Theorem 2z converges in distribution to multivariate normal with mean 0. The

elements of asymptotic covariance matrix can be computed as follows: For
s=kt+1l,,m, t=1,,k as n—roo,

Cov(\[q—,-g.-.s. \/Zg‘t) = E[(ﬁgns)(\/q_xgxt)]
— 0,

since \/'q_,-g i-s and \[q—,-g i-+ are asymptotically independent. Also,

Cov (V@i ver i 2, (h=1)) = EL(@E,) (£ 3 (eh=1))]

= Elege4] = 0 )

because for elliptical distributions all third moments are zero (see, for example, Gang(1987)).
These covariance expressions show that the elements of 2z, are asymptotically independent of
the elements of 2z, for elliptical distributions. Thus, under H,, the test statistic T} is
asymptotically independent of the statistics Vj, j=0,-**,k—1. nu

Therefore, this result agrees with the result for multivariate normal distributions. From 98]
we see that the elements of 2, are generally not asymptotically independent of the elements
of 2z, Thus, under Hj, the test statistic T is generally not asymptotically independent of

the statistics Vj, j=0,*:,k—L. It is shown that this result is sensitive to certain departures
from normality.

3. Simulation Study and Conclusion

A Monte Carlo experiment was carried out to see how inferences regarding the sequential
testing procedure based on the assumption of multivariate normality are affected if this
assumption is violated. In particular, suppose we are sampling from an elliptical t-distribution

on 5 degrees of freedom. Recall that the asymptotic distribution of T, =
ny D log (1+1;) is xz(n,_k)(m_k) for nonnormal populations. The statistic 7T, was used

in the study. The study consisted of generating 500 samples of size #,= 50, 100, 200 of an
4-variate elliptical t-distribution on 5 degrees of freedom for 6 populations with parameters
pi:(i=1,-,6) and = $1,. These samples can be generated using the following
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relationship:

oo

yi = ﬂi+Z_ (4 V)x,

where x~ N;(0, I,,) and Z~ x. For further details of simulations see Hwang(1994a).
Generation of the samples, computation of the sample eigenvalue and the analysis were
conducted using SAS and SAS/IML.

Table 1 and 2 present the observed unconditional and conditional significance levels,
respectively. As #, increases, the observed conditional and unconditional significance levels
become closer to each other. This result agrees with the result for multivariate normal
distributions. To conclude, we see for multivariate elliptical populations the size of the test is

not affected asymptotically by viewing this sequence of tests as conditional tests but this
result is sensitive to certain departures from normality.

Table 1: Unconditional Significance Levels for elliptical t(5),(m=4,p=6)

T.OS T.IO
9, 6, 04 A 1
1z =50 ny =100 n, =200 1z =50 5, =100 n, =200
02 0 0 O 1 0.020 0.038 0.060 0.052 0.086 0.116
08 0 O O 1 0.038 0.040 0.056 0.090 0.110 0.114
6 0 0 0 1 0.042 0.044 0.052 0.094 0.108 0.108
04 02 0 O 2 0.020 0.052 0.062 0.050 0.100 0.114
08 04 0 O 2 0.026 0.062 0.068 0084 0.116 0.118
6 2 0 0 2 0042 0.062 0.062 0.110 0.118 0.124
04 02 01 O 3 0.004 0.004 0.006 0.012 0.014 0.032
2 1 08 0 3 0.042 0.052 0.052 0.090 0120 0.118
6 4 2 0 3 0.060 0.060 0.066 0124 0126 0.114

Table 2: Conditional Significance Levels for elliptical t(5),(m=4,p=6)

T.OS T.IO
0, 6, 0, ‘A 1%
ny =50 ny=100 n, =200 7y =50 ny;=100 2, =200
0.2 0 0 0 1 0.062 0.053 0.061 0106 0.103 0.117
0.8 0 0 0 1 0.041 0.040 0.056 0092 0.110 0.114
6 0 0 0 1 0042 0044 0.052 0.094 0.108 0.108
04 02 O 0 2 0.068 0.066 0.063 0.150 0.113 0.115
08 04 O 0 2 0.036 0.063 0.068 0099 0.117 0.118
6 2 0 0 2 0.042 0.062 0.062 0.110 0.118 0.124
04 02 01 O 3 0250 0222 0.059 0250 0214 0.174
2 1 08 0 3 0.067 0054 0.052 0.118 0.122 0.118
6 4 2 0 3 0.060 0.060 0.066 0124 0.126 0.114
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