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Estimation of Manoeuvring Coefficients
of a Submerged Body
using Parameter Identification Techniques

Chan Ki Kim* and Key-Pyo Rheef

Abstract

This paper describes parameter identification techniques formulated for the
estimation of maneuvering coefficients of a submerged body. The first part of
this paper is concerned with the identifiability of the system parameters. The
relationship between a stochastic linear time-invariant system and the equivalent
dynamic system is investigated. The second is concerned with the development
of the numerically stable identification technique. Two identification techniques
are tested; one is the maximum likelihood (ML) methods using the Nelder &
Mead simplex search method and using the modified Newton-Raphson method,
and the other is the modified extended Kalman filter (MEKF) method with a
square-root algorithm, which can improve the numerical accuracy of the extended
Kalman filter.

As a results, it is said that the equations of motion for a submerged body
have higher probability to generate simultaneous drift phenomenon compared
to general state equations and only the ML method using the Nelder & Mead
simplex search method and the MEKF method with a square-root algorithm
gives acceptable results.

1 Introduction

The manoeuvring coefficients in the equations of motion for a submerged body are used
as basic input data for motion simulation, hull form design and controller design and
they are normally obtained by model test, theoretical calculation or empirical formulas.
However, it is expected that the simulation results based on such manoeuvring coeffi-
cients are different from sea trial results. Thus, the parameter identification technique
based on real observations should be applied to the reestimation of the manoeuvring
coefficients. As a result, parameters of a mathematical model, which are obtained
from the parameter identification technique combined with the measured data, permit
reasonably predicted results for real application. There are three major steps involved
in solving the system identification problem; The first step is to build a mathemat-
ical model which can clearly express physical phenomenall]. The second is to check
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the identifiability of system parameters[2]. And the last step is to select the proper
identification technique for the identification of the parameters(3].

The identifiability implies whether parameters in the candidate mathematical model
can be uniquely determined from the observed data. The simultaneous drift phe-
nomenon, one of the serious defects of current identification technique, results from
the lack of identifiability of the system parameters. And the sensitivity of the esti-
mated parameters subject to the change of the initial guess also depends on the local
identifiability. Even though the identifiability of the system could be guaranteed, the
success of the parameter estimation still depends on the convergence of the identi-
fication technique since the numerical instability may leads to divergence from real
solution. Hence it is essential to check the identifiability of the system parameters
at first and then to seek the numerically stable technique. The first part of this pa-
per is concerned with the identifiability of the system parameters. To this end, the
relationship between a stochastic linear time invariant system and the equivalent dy-
namic system is investigated using the identifiability concept introduced by Tse and
Anton[4]. Also, the relationship between maneuvering coefficients of dynamic system
and those of the equivalent system are investigated. As a result, it is found that linear
equations of motion of a submerged body cannot have global identifiability and have
higher probability to generate simultaneous drift phenomenon due to the existence of
the inertia matrix compared with general state equations. The second is concerned
with the development of the numerically stable identification technique. Two identi-
fication methods are tested; they are the maximum likelihood method which is one
of the typical off-line techniques and the extended Kalman filter method which is one
of the typical on-line techniques. In the case of the maximum likelihood method, the
maneuvering coefficients are identified by two methods : one is the combination of the
Newton-Raphson method and the steepest descent method as a gradient method, and
the other is the Nelder & Mead simplex search method as a direct search method. To
improve the numerical accuracy of the extended Kalman filter method, the modified
extended Kalman filter method with square-root algorithm is used for the identification
of the maneuvering coefficients. It is found from the identified results that the max-
imum likelihood technique in combination with the steepest descent method and the
Newton-Raphson method gives the unsatisfactory results, but the maximum likelihood
technique of the Nelder & Mead simplex method and the modified extended Kalman
filter method with a square-root algorithm are less.

2 6-DOF Equations of Motion

Although trajectories of the body can be described by referring to the coordinate
system fixed to the ground, in order to make the calculation of hydrodynamic loading
easier, we take the coordinate system fixed in the body shown in Fig.1.

The origin of the right-handed coordinate system which the equations of motion
are referred, coincides with the center of gravity. And the equations of motion and the
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Figure 1: Coordinate System

measurement equations are as follows:
Mi = Az +Bi+ S+,
=z = MY Az+Bu+95)+w
Az + Bu+ S + w.
zZy = Cip+0, (1)

il

where M is the inertia matrix, A is the damping matrix of system, B s the input matrix,
S is the restoring matrix, and C is the measurement matrix. Detailed expressions of
Eqn.(1) are shown in the appendix.

The equations of motion in Eqn.(1), are continuous-time system physically. But, the
discrete state equations would make it convenient to use digital computers. Parameter
identification techniques using Kalman filter or using gradient optimization method
contains the derivatives of state variables with respect to system parameters. It might
make serious error to calculate the first or the second derivatives numerically. In this
paper, the linear equations of motion were discretized using Cayley-Hamilton principle
and the new state equation, in which differentiated state variables are regarded as state
variables. was built up as follows:

Zr = ez + AN (e — 1) (Bug—1 + S) + A% — Iy (2)
dz(t)  ,0a(t)  O0A_ 0B _ as
50 = “Aap T3 T ggult 5
a() _ 3l 0Aa(t) , 9AD:(1)
56.6, ~ 56,0, T 36, 96, T 90, 96,
92A 9B as
AL a(t) + =22 3
+38.90,° D 3696, * 56,50, (3)

where the initial conditions are such that
0z(0) _ 9%2(0) _
06— 96,0,
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3 Identifiability of Equivalent Dynamic System

Let 2, = P7'Z and P be a nonsingular matrix. Then equations of motion for a
submerged body can be written such that

Myi = Ai+Bi+ S+,

Zy = CiZp+ 0, (4)
where
Ml = MP,
A = AP
C, = CP.
Then

Cz = CIP_IP,z_;I = Cl-i'la

for any input and two dynamic systems parametrized by 8 and 6; which are respectively
equivalent. Therefore, introducing the definition of the identifiability by the probability
density function concept of Tse and Anton[4]

i M
7 1 . _ . _
P(Zm;b0) = const-exp |—5 ) (zx — CZi; 00)" R (2 — Cay; 90)]
k=0
_ . M . )
= const - eXp |—= Z(%k — Cl‘i‘lk; Bl)TR_l(ék - C]ilk; 01)
_ | 2 k=0
= p(Zm;6). (5)

This relation means that the conditional probability density functions of two sys-
tems are identical and Z and Z; are both unresolvable. Consequently, it can be said
that the dynamic system which could be equivalently transformed has not the global
identifiability and at most can be locally identifiable. Applying the above to Eqn.(1)
for a submerged body system, the equivalent transformation matrices which are non-
identical and nonsingular, can be found. From the relations of two dynamic systems,
it can be said that the parameters with respect to the inertia terms and the damping
terms would be drift simultaneously. We can say that this makes parameter identifica-
tion for the equations of motion more difficult than the general state equations. The
relation of Eqn.(6) is one of an example of these phenomena.

Y, = (M~-Y,)Pu-Y;,
Y, = Y,Pu+Y,, (6)

where P4 means the (2,4) element of P matrix. Y} and Y] are corresponding to sway
added mass Y; and sway damping Y, due to roll in the equivalent system, respectively.
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4 The Maximum Likelihood Method

The maximum likelihood method is to take Z; estimate which maximizes the prob-
ability of the measurement Z; that actually occurred, taking into account of known
statistical properties of ¢ taken as a zero mean, gaussian distributed observation with
covariance matrix R. Therefore, the ML estimation problem can be formulated in
a probabilistic manner by defining the likelihood function as the probability density
functions of the measurement z; given § and R.

P(Zm|0) = p(Z|Zum-1,0) - p(Zpr-110)

M —
= HP(EkIZk—ho)) (7)
k=0
where the conditional probability density function can be given such that

1 1
—-(2r — C.’Ek)TR—l(Ek — ka) .

v e

Maximization of the likelihood function w.r.t. # and R can also be achieved by
minimizing the negative log-likelihood function.

p(zklzk—l’ 0_) =

M
—Inp(Zn|d) = const + % S (5 - Ca) R (3 — o). (8)

k=0
Minimization of —In p(Zx|0) w.r.t. R results in

M
Ju Z (ze — Czx)TR™ (2 — Ciy).

k=0

This leads to a system of nonlinear equations which can be solved by some numerical
methods. In this paper, two methods are applied; one is gradient method known as
the modified Newton-Raphson method and the other is direct method known as the
Nelder and Mead simplex search method.

4.1 The modified Newton Raphson method

Typical technique to find the maximum likelihood estimate is to use root-finding rou-
tines known as Newton-Raphson method. The correction of this technique is given

by

Af~ — 00 =By (9)

[az%(é)] - ang((?)’

The Newton-Raphson method may converge very fast but may be sensitive to mea-
surement noise and, in extreme cases, inaccuracy in the mathematical model may lead
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to the divergence. To ameliorate the convergence of this estimator the steepest descent
method is combined with the Newton-Raphson method such that

o0Jp (0 0% (0 - = =
L g’a_() [ agz()-}-)\lmxm]AH:OatH:Ok, (10)
where
aJ
A = Max|—
PR
g = 05ifX>1,
= i < 1.
U /\+11f/\__1

4.2 Nelder & Mead simplex search method

The maximum likelihood estimate using Nelder & mead simplex search method is a
direct search method. This method involves constructing an m + 1 cornered shape
(simplex) and then allowing this shape to move toward the minimum point by sequent,

replacing the corner of the current simplex having the highest value of Jp(6) with a

new point having a lower value of Jp(#). The algorithm can be described as follows.

1. Sample Jps at the m+ 1 corners of the _s_implex and establish the corners which
yield the highest, 8),, and lowest 8;, Jas(#) in the current simplex.

2. Sample Jps at the centroid 6, of all §; but 6.

3. Test the stopping condition; If ;n—lﬁ T IMm(0:) — Jm(Bs)}?}/? < ¢, stop and
return Jar(6;) as minimum; If not, continue.

4. Reflect 6, through 8, to give 0, = 20, — 8),; Sample JM(ér).

5 1f Ju(6,) < JM(él), reflect 0, through 0, in order to give 6, = 20, — 6, and then
sample JM(Oel; If Jm(0.) < Jum(6)), replace 6, by 0., and return to 2.; If not,
replace 8, by 6., and return to 2.

6. If JM@T) > Ju(8)), check Jar(8,) > Jp(6;) for all 8; except 8y; If false, replace
0, by 8,, and return to 2; If true, continue.

7. Sample Jp at 8. = (6, + 8,)/2, if Ju(6,) < Jm(81); If not, sample at 6, =
(Gh + 52(,)/2

8. If Jy(6.) < JMgéh), r_epla(_:e 0, by 0., and return to 2.; If not, reduce simplex
toward 6; using 8; = (6; + 6)/2, and return to 2.
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5 The Modified EKF with a Square-Root Algo-
rithm

The parameter identification technique using the EKF is generally used. In the EKF,
the usual linear Taylor approximation of the nonlinear system is used. It is clear that
the EKF is a real-time algorithm and efficient, but it does not always produce desirable
result. Hence, a modified version of the EKF (MEKF) is introduced. In the MEKF, the
center for each updated linear Taylor approximation is derived from an optimal Kalman
filtering algorithm. That is, the optimal Kalman filter to update the state variables
at the previous state estimate and the EKF to obtain parameters of the model at the
corresponding predicted position should be solved in parallel, starting with the same
initial estimate as shown in Fig.2.

Extended Kalman Filter
X,;,0, S, ;,6,
Initial
Conditions - —=
R XL 9,
X, = Xy
Xy = [iLo’éo]
X,
Kalman Filter

Figure 2: Parallel Algorithm for Modified Extended Kalman Filter

And it has been observed that the standard Kalman filter is in many cases numer-
ically unstable. For this reason, the square-root filter is proposed. The square-root
filter requires inversion of triangular matrices, and improves the computational accu-
racy by working with the square-root of possible very large or very small numbers. The
square-root Kalman filtering algorithm can be stated as follows:

e The initial conditions

Z(to) = %o,

Joo = [Var(zo)]'/”.
e Time-propagation

1. compute Ji -1, the square-root of matrix.

2. Ly = (Cka,k—le,k—lTCkT + Ry)°,
Ki = Jeso1depor Cel (LT 1L

3. &(t7) = ®(ti, ti-1)E(tF,) + Ba(ti1)-



Chan Ki Kim, Key-Pyo Rhee 31

e Measurement updating

ek = Jikor [ = Jepo1 TCT (L)1 (Li + Ri) " Crdr k-],
gt = #(t7) + K(t) [z — C(t)E(t)] -

In the above, the superscript ¢ indicates the Cholesky decomposition of a positive-
definite matrix, which is lower triangular and taking into account of the numerical
stability, the singular value decomposition can be used to calculate Jj ;.

6 Calculation Results and Discussions

To identify maneuvering coefficients of a submerged body, two measurement data are
produced from two scenarios. The first scenario is the one which is generally used in
sea trial tests, and is composed of increasing or decreasing depth control command by
20m at an interval of 5sec, changing course rate command into +20°/sec at an interval
of 1.5sec and zero roll command as shown in Fig.3. For the convenience, let’s express
the scenario as scenario I. The second scenario, scenario II, is composed of horizontal
mode data and vertical mode data. To obtain the horizontal mode data, the operating
depth is kept constant by using an automatic control of right and left elevator angles,
and the rudder angle is commanded to follow the scenario built by pseudo random
binary sequence. On the other hand, vertical mode data are obtained when the left
and right elevator angles are commanded to follow the same scenario as above while
rudder angle is fixed.

For the first measurements, maneuvering coefficients of a submerged body are iden-
tified by using the maximum likelihood technique with the Newton-Raphson & steepest
descent method, the maximum likelihood technique with the Nelder & Mead simplex
search method and the modified extended Kalman filter with a square-root algorithm.
These results are compared in Fig.4, where the x-axis represents values of parameters.

As shown in Fig.4, the ML with Nelder & Mead simplex search method and the
MEKF with a square-root algorithm give acceptable results but in the ML in combina-
tion with the Newton-Raphson method & the steepest descent method, some identified
coeflicients drift and in the worst case, seem to be losing convergency. This phenomenon
is due to using the inverse of Hessian matrix and the sensitivity of accuracy of the math-
ematical model. Because absolute values are plotted in the figures, for some parameters
whose magnitude are large, the estimated values show larger differences from the true
value, even though their estimation errors are within the acceptable ranges compared
to those of other parameters.

For the second measurements, maneuvering coefficients are identified by using the
ML with the Nelder & Mead simplex search method and the MEKF with a square-
root algorithm, and the identified results are compared in Fig.6. It is obvious that the
measurement data from from scenario II are better than those from scenario I in order
to identify maneuvering coefficients using the ML with the Nelder & Mead simplex
search method, but for the MEKF with a square-root algorithm, two data give similar
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results. Therefore, it is said that the ML with the Nelder & Mead simplex search
method could identify parameters satisfactorily if the input signals were designed using
the concept of pseudo random binary sequence.

7 Conclusions

In this paper, the relationships between maneuvering coefficients of dynamic system
and those of the equivalent system are investigated, and two identification techniques
are tested. One of the identification techniques is off-line method such that the ML
methods using the Nelder & Mead simplex search method and using the modified
Newton-Paphson methods, and the other is the MEKF with a square-root algorithm
as on-line method. As results, the following conclusions are drawn.
1. Linear equations of motion of a submerged body cannot have global identifiability
and have higher probability to generate simultaneous drift phenomenon due to
the existence of the inertia matrix compared to general state equations.

2. Identified results show that the ML with the Nelder & Mead simplex search
method gives acceptable results but results of the ML in combination with the
Newton-Raphson method and the steepest descent method are unsatisfactory.

3. The ML with the Nelder & Mead simplex search method gives satisfactory results
if the input signals were designed using the concept of pseudo random binary
sequence.

Among the areas for further investigation, it might be mentioned as follows:

1. the combination of on-line and off-line method

2. identification technique to guarantee the global identifiability such a genetic al-
gorithm.
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Appendix Equations of Motion

Equations of motion of a submerged body are written as follows:

e surge
(m—Xy)u = Xyu+ Xr— (W — B)siné.
® sway

(m=Y)o-Ysp—-Yir = Yuo+Yp+ (Y, —mU)r+ (W — B)sin¢cos 8

+Y5, 6.
e heave
(m —Zy)w— 2 = Zyw+(Zg+mU)g+ (W ~ B)cosgcosd
+Zs, Ser -Qf- 6el.
e roll

—Kyo+ (I, — K;)p— K;7 = K, + Ky,p+ K,r —ygBcos ¢cos b
+zpB sin ¢ cos 0 + K&r(s,- + ngrée, — ng,6el.

e pitch
-Myw+ (I, - My)¢§ = M,w+ Myq+ zpBcos¢cosl + zgBsinb
- +M6., 6:1' + 6e1 )
2
o yaw

—Ny0 — Nyo+ (I, — N;)¥ = Nyv+ Npp— zpBsin¢cosl
—ygBsinf + Ng 6.

Euler angles

r+ gtan ¢
cos 0 cos ¢(1 + tan? ¢)’
g = qsec¢—¢cos0ta.n¢,
¢ = p+z/}sin0.




