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Finite Difference Analysis of Safe Load and Critical
Time in a Four-Parameter Viscoelastic Column

Jong Gye Shin*and Jae Yeul Lee!

Abstract

A creep-buckling analysis is studied for a simply-supported viscoelastic column.
The fluid-type four-parameter model is employed because of its general applicability to
creep materials. Using the imperfection-based incremental approach, a nonlinear load-
deflection equation is derived. Safe load and critical (or life) time which characterize
the stability of the viscoelastic column are obtained mathematically and interpreted
physically. A finite difference algorithm is applied to solve the second-order differential
equation of the viscoelastic stress-strain relation. Numerical calculation has been made
and discussed for a SUS316 stainless steel column.

1 Introduction

Some materials, such as concrete, polymers, and metals at high temperature, continue to
increase their deformation while the applied load is kept constant. This phenomenon is
called creep. In design applications to slender structures of those materials, the coupled
creep-buckling analysis should be required. Among typical examples are gas uptakes in
ships and exhaustion pipes in nuclear reactor made of stainless steels.

There are many publications on creep and buckling analyses. However, characteristics
of the coupled creep-buckling responses has not been studied intensively. It is recognized
that conventional critical load of an elastic structure is no longer valid for the creep-buckling
problems.

Song and Simitses[1] investigated the elastoviscoplastic buckling behavior of a simply-
supported beam with incremental approach. For viscoplastic case, unified Bodner-Partom?
constitutive relations were used. In a practical view, mechanical constants of Bodner-
Partom? model are hardly determined for a specific material, especially for elevated
temperature environments. Stubstad and Simitses[2] analyzed creep response using both
the Laplace transform and a finite difference method and compared results. Dost and
Glockner[3] used the Laplace transform to a perfect column of a three-parameter solid
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model. Szyszkowski and Glockner[4] used simplest one-degree-of-freedom rigid bar-
spring-dashpot structural models to clarify creep stability problems. He suggested a con-
venient graphical method which helped to understand the safe load and the safe-service
time for the solid-type viscoelastic materials. Vinogradov[5] treated the creep-buckling
behavior as a quasi-elastic state. He analyzed beam-columns of a three-parameter solid and
four-parameter model under an axial load, axial-lateral load, and axial-bending moment.
However, all the previous papers have treated simple viscoelastic models or the inefficient
Laplace transform method.

This paper presents the coupled creep-buckling analysis of a column. Among many
viscoelastic models (Bazant and Cedolin[6]), the fluid-type four-parameter rheological creep
model, shown in Figure 1, is adopted since it is useful engineering material model for
concrete, polymers, metals at high temperature, sea ice, and others. Also, this model
can describe the simple viscoelastic models like the Kelvin and Maxwell models. The
incremental formulation of an initially imperfect column is employed. This imperfection-
based incremental method results in exploring two key quantities of the creep-buckling
phenomenon; the safe load and the critical (or safe) time. A finite difference algorithm is
applied to solve the coupled governing equations under initial conditions. Mathematical
and physical concepts of the safe load and the critical creep or safe time are discussed. For
numerical calculations, a SUS316 stainless steel column at high temperature is studied.
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Figure 1: Four-parameter viscoelastic model

2 MATHEMATICAL FORMULATION

2.1 Incremental governing equation

A nonlinear constitutive relation between the incremental stress(Aco) and the incremental
strain(Ae€) has the form of

Ao = CAe — A (D)

where C' and A( are functions of temperature, deformation, and other internal state vari-
ables. The incremental form of the adjacent equilibrium equation of a simply supported
beam with initial imperfections in Figure 2 is given by

AM — (P, + AP)Aw = AP(w, + w°) )
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where P is axial load and w is lateral deflection. The subscript 'a’ denotes the corresponding
quantity at time t,, and w? is the prescribed initial imperfection. Taking sinusoidal functions
of w and ¢ in Eq.(1) and (2) gives

AP(wae + w) + [ Az dA

Aw, =
YT (BE)[Cat dA— (P + AP)

3)

where ! is the beam span, and n is an integer. The subscript ’c’ means the quantity at the
center of the beam.
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Figure 2: Coordinate system

2.2 Creep-buckling analysis of a four-parameter viscoelastic model

The generalized 4-parameter viscoelastic model has the following differential constitutive
relation.

Qo0 + 10 + Qg0 = (o€ + B€ + Boe @)

where «; and 3; are material constants.
Thus the relation between the incremental stress and strain in terms of the finite
difference components can be obtained by

_ B+ At- by 1
Aoi = a9 + At - oy Aei 209 + At - al[ a2(0i — 0i-1) &)

+ Balei — €i—1) + (At)*(ago; — Boes)]

Comparing Eq.(5) with Eq.(1) gives, at the i-th increment,

O = Ba + At - 51
(0% + At - 011’ 6
1 \ (6)
G = m[—az(di —0i1) + Ba(ei — €i-1) + (At)* (oo — Boei)]

Using Eqgs.(3) and (6), post-buckling responses and critical loads of a four-parameter
model can be calculated by increasing incremental deflection Aw,. Also, in Eq.(3), a creep
response can be obtained under constant axial load P,. Special discussions can be made
for the following material models:
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Pure elastic model:
For a pure elastic material case, ag = 0,04 = 1,as = 0and Fy = 0, 31 = Ey, 8> = 0.
Then Eq.(3) is converted to:

AP(wga + w?)

Awe = BB ZAP)

(7

where Pg is the Euler critical load. As shown in Eq.(7), the total load is converged
to the Euler critical load and the deflection increases infinitely.

Three-Parameter solid model:

Material constants are ag = 0,a; = (E1 + E2)/E1, Qg = 772/E1 and Gy = 0,6 =
E,, B2 = m7. In this case, one can easily find that deflection is finite under a certain
load, which is called a safe load.

Three-parameter fluid model:

Material constants are ap = Eo/m, a1 = (m + n2)/m,a2 = 0 and 3y = 0,6, =
Es, B, = 1. Initial conditions of this model are o(g) = €) = €y = 0. During the
loading process, the creep deformation increases unboundedly.

Four-parameter model:
Material constants in Eq.(4) are ag = 0,1 = 1 + Ey/Ey + n2/m, as = 1o/ E; and
Bo = 0, 81 = Es, B2 = 1. Integrating Eq.(4) twice and letting £ — 0 gives:

2 0o 0 e ,

i=j

From initial conditions, that is, o) = €y = 0,0 = €y = 0, it can be derived
that o(;) = 0(~1) and €;;) = €(~1). Similar to the three-parameter fluid model, creep
response increases unboundedly during loading process.

Definition of safe load and critical time

When AP = 0, the limit creep load can be obtained. However, there exists an incremental
deflection when [ A(z dA > 0 in Eq.(3). Thus, the safe load can be defined by

/ ACz dA =0 )

For a constant P, there would exist deflection increment Aw, if AP = 0 and A{ > 0.

In that case, a certain state where a structure lost its function is reached. It is called the
critical creep deformation and the time duration to reach the state is called the critical creep

time
load

or life time. Time-dependent creeping materials have one of these characteristics; safe
or critical time.
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Applying the finite difference form of Eq.(6) to Eq.(9) and expressing in terms of
loads and deflection gives:

/ AGz dA = 5 ((B1on — 200){ Pi(wie = u)

nm
- i—l(wi—l,c - wg)} - (‘l—

+ 2(A8)2{ o P (wie + wP) + (%71)%1%}]

Y(Atfy — 282) I (wip — wiq.)  (10)

Since the initial stress and strain are zero, Ay = 0. Thus, we have:

/ACOZ dA = 2&2 n 6ta1 [(5t(11 2a2)P1(wlc + wc) (11)

nm
- (—[—)2(At,61 — 252)Iw1,c] =0

To satisfy the criterion of a safe load in Eq.(9), the incremental form of Eq.(10) should
be vanished at every incremental step. The first incremental time step (i=1) can be written
as:

/AClz dA = m[(ét&l - 2a2)P1 (wlc + 'LU(C))
— (FF)A(At8, - 28)Tw ¢ (12)

+ 2(At)2{a0P1 (wlc + wg) + (%)2,30111)1’6}]

Applying the initial condition of Eq.(11) to Eq.(12) and letting P, = P since there is no
load increment gives:

2(At)?

/ AGzdA = 205 + 6ta;

{a0P(wie + ) + (57)*Bolwy,c} (13)

Eq.(13) takes an important role to mathematical description of a safe load.

(i) For the pure elastic model : Since ag = By = 0, Eq.(13) vanishes. Thus the initial
condition of Eq.(11) governs the system and the safe load is identical to the Euler
buckling load.

(ii) For the three-parameter solid model : Similar to the elastic case, the safe load can
be obtained by:
_ (%E)?ElEQI We . E1 We n
s E\+ E; wc+w2~E1+E2 wc+w2

L = (14)

where Pg = (n2E,1)/12.

(iii) For the three-parameter fluid model: Since ag # 0 and Gy = 0, we have [ Az dA >
0 in Eq.(13). Therefore, under a constant load, the deflection increases with time. No
safe load can be defined. The critical time duration concept should be considered.
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(iv) For the four-parameter model: Similar to the 3-parameter fluid mode, we can derive

(A1)?

Jacar= e

{aOP(wlc + 'll)g) + (n_;r‘>2,601’11}1’c} (15)

Therefore, since [ A(z dA > 0 under constant loading, the deflection increases with
time. No safe load can be defined, and the critical time should be considered for this model.

3 NUMERICAL CALCULATIONS AND DISCUSSIONS

Numerical calculations are performed for a SUS316 stainless steel column at 1, 100°F(593
°C). Material properties and structural dimensions are [ = 1m,J = 2.5x10"'m?, E =
1.572x10''Pa, and 1 = 1.7208x10'Pa-min. The material is verified to behave as the
four-parameter creep model (Lee[7]).

Figure 3 shows creep responses for various loading conditions; P/Pg = 0.94,0.96, 0.98
About 4% decrease in loading gives two times longer time duration to reach the same creep
deflection. Since the critical time is a main parameter for the four-parameter model, slight
change of loading results in longer critical time.

4-parameter fluid medei E1/E0=1.0
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Figure 3: Creep behavior of the four-parameter viscoelastic model for various loadings

Figure 4 shows the effect of the magnitude of initial imperfections. For F, = E; and
12 = M1, variations of P/Pg are plotted for different w? = 4 x 1075,2 x 107%,4 x 10~*m.
This figure is very similar to elastic case.
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Since the safe load is defined for a three-parameter solid model, Figure 5 shows the
safe load for E;/E; = 0.5,1,1.5. The safe load is higher for larger E5/E;. That is due to
the constrained effect of the spring £, for applied loads.

Wo=4E-3
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Figure 4: Creep-buckling responses for various imperfections

4 Conclusion

A creep-buckling characteristics of a simply-supported column is analyzed for the fluid-type
four-parameter viscoelastic model. The nonlinear adjacent equilibrium equation is derived
using the imperfection-based incremental approach. Safe load and critical (or life) time
which characterize the stability of the viscoelastic column are obtained mathematically and
interpreted physically. An efficient finite difference algorithm is developed for the second-
order differential equation of the viscoelastic stress-strain relation. For creep-buckling
responses, the safe load and critical time concepts should be distinguished for different
viscoelastic models. In this paper, it is found that for a four-parameter model, the magnitude
of applied loads affects significantly the critical time duration. Since the creep-buckling of
the four-parameter model is formulated in this paper, the results can be expanded to other
simple viscoelastic columns.
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Figure 5: Safe load of a three-parameter solid model for various E
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